文章摘要
潘茂* **,张梦菲* ** ***,辛增卫* **,金佳琪* **,郭诚* **,方金云*.基于自监督学习的图转移网络会话推荐算法[J].高技术通讯(中文),2022,32(12):1213~1225
基于自监督学习的图转移网络会话推荐算法
Self supervised graph transition network for session based recommendation
  
DOI:10. 3772/ j. issn. 1002-0470. 2022. 12. 001
中文关键词: 匿名用户; 会话推荐(SBR); 协同信息; 自监督学习; 图转移网络
英文关键词: anonymous user, session-based recommendation(SBR), collaborative information, self-supervised learning, graph transition network
基金项目:
作者单位
潘茂* ** (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
张梦菲* ** *** (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
辛增卫* ** (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
金佳琪* ** (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
郭诚* ** (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
方金云* (*中国科学院计算技术研究所北京 100190) (**中国科学院大学北京 100190) (***国家计算机网络应急技术处理协调中心北京 100029) 
摘要点击次数: 1242
全文下载次数: 904
中文摘要:
      针对基于会话的推荐算法存在建模物品表示缺乏会话间物品协同信息的问题,提出一种基于自监督学习的图转移网络会话推荐算法(S-SGTN)。该算法首先根据所有会话序列组建协同会话图;其次将当前会话与协同会话图中目标物品的邻居节点表示输入双通道图转移网络中,并在网络训练过程中引入自监督学习模块,通过最大化物品全局和局部表示的互信息,作为推荐任务的辅助任务,以改进物品和会话的表示;最后根据生成的匿名用户会话表示预测下一个产生交互的物品。在公开数据集上的实验结果表明,本文的推荐模型在召回率和平均倒数排名指标上的表现优于其他相关方法。
英文摘要:
      Session-based recommendation predicts the next item given anonymous sequence of previous items consumed in the session. Most existing studies focus on modeling the current session with various neural architectures. Those approaches overlook many collaborative signals from the other sessions. This paper proposes a novel method, namely self-supervised graph transition network for session-based recommendation, S-SGTN for brevity. Methodologically, first, an undirected global collaborative graph based on all sessions is generated; then, the neighbor items’ embedding of the target item in the current and collaborative session is input into the dual-channel graph neural networks. During network training, a self-supervised learning model is employed to improve the representation of items and sessions by maximizing the mutual information of global and local item representations as an auxiliary task to the recommendation task. Finally, the next interaction will be predicted based on the anonymous session representation. Experimental results demonstrate that the proposed models show competitive or state-of-the-art performance in terms of Recall@k and MRR@k on three real-world datasets.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮