马冲冲*,王一铮**,王坤**,冯昌森*.考虑源荷不确定性下微电网能量调度的深度强化学习策略[J].高技术通讯(中文),2023,33(1):79~87 |
考虑源荷不确定性下微电网能量调度的深度强化学习策略 |
Deep reinforcement learning based dispatch strategy for microgrid energy management considering uncertainty of source and load |
|
DOI:10. 3772/ j. issn. 1002-0470. 2023. 01. 008 |
中文关键词: 微电网; 能量管理; 强化学习; 深度确定性策略梯度(DDPG) |
英文关键词: microgrid, energy management, reinforcement learning, deep deterministic policy gradient(DDPG) |
基金项目: |
作者 | 单位 | 马冲冲* | (*浙江工业大学信息工程学院杭州 310023)
(**国网浙江省电力有限公司经济技术研究院杭州 310008) | 王一铮** | (*浙江工业大学信息工程学院杭州 310023)
(**国网浙江省电力有限公司经济技术研究院杭州 310008) | 王坤** | (*浙江工业大学信息工程学院杭州 310023)
(**国网浙江省电力有限公司经济技术研究院杭州 310008) | 冯昌森* | (*浙江工业大学信息工程学院杭州 310023)
(**国网浙江省电力有限公司经济技术研究院杭州 310008) |
|
摘要点击次数: 1363 |
全文下载次数: 1011 |
中文摘要: |
针对微电网中源荷不确定性问题,本文提出一种基于连续型深度确定性策略梯度(DDPG)算法的微电网能量调度方法。首先,以日运行成本最低为目标构建优化调度模型,并将该调度模型转化成马尔可夫决策过程(MDP),定义了马尔可夫决策模型的状态空间、动作空间和奖励函数。其次,利用长短期记忆(LSTM)神经网络提取环境中时序数据的未来趋势作为状态,从而在连续调度动作空间下改善深度强化学习算法收敛效果。最后,通过训练深度强化学习模型,对比多种算法下最优能量调度策略,验证了本文所提方法的有效性。 |
英文摘要: |
Inorder to address the renewable energy and load uncertainty problem, a microgrid energy scheduling method based on a continuous deep deterministic policy gradient (DDPG) algorithm is proposed. Firstly, an optimization model is establised with the objective function to minimize the daily operating cost, and thereby the decision model is transformed into a Markov decision process (MDP) where the tuple of MDP, i.e., the state space, action space and reward function, is defined. Secondly, the long short term memory (LSTM) neural network is used to extract the future trend of the time series data in the stochastic environment as the state, so as to improve the convergence effect of the deep reinforcement learning algorithm in the continuous action space. Finally, through training a deep reinforcement learning model and comparing the energy scheduling strategies obtained from the various algorithms, the effectiveness of the method proposed in this paper is verified. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |