王立红,张延华,孟德彬,李萌.基于DDPG算法的云数据中心任务节能调度研究[J].高技术通讯(中文),2023,33(9):927~936 |
基于DDPG算法的云数据中心任务节能调度研究 |
Research on task energy saving scheduling of cloud data center based on DDPG algorithm |
|
DOI:10. 3772/ j. issn. 1002-0470. 2023. 09. 004 |
中文关键词: 云数据中心; 深度强化学习(DRL); 任务调度; 深度确定性策略梯度(DDPG)算法 |
英文关键词: cloud data center, deep reinforcement learning(DRL), task scheduling, deep deterministic policy gradient (DDPG) algorithm |
基金项目: |
作者 | 单位 | 王立红 | (北京工业大学信息学部北京 100124) | 张延华 | | 孟德彬 | | 李萌 | |
|
摘要点击次数: 1000 |
全文下载次数: 797 |
中文摘要: |
承载云计算产业的数据中心近年来数量和规模迅速增加,产生巨大电力消耗。因此,数据中心节能减排迫在眉睫。本文提出一种节能调度策略,其核心思想是使用准入控制和优先级控制对队列任务进行筛选和排序,然后基于深度确定性策略梯度(DDPG)算法对任务进行在线调度,以适应云计算负载的高度动态性,使能耗最小化。仿真实验结果表明,本文所采用的调度方案在降低云数据中心能耗和减小任务的响应时间方面具有有效性。 |
英文摘要: |
The number and scale of data centers hosting the cloud computing industry have increased rapidly in recent years, resulting in huge power consumption. Therefore, energy conservation and emission reduction of data centers is imminent. This paper proposes an energy saving scheduling strategy, the core idea of which is to use admission control and priority control to screen and sort queue tasks, and then schedule tasks online based on the deep deterministic policy gradient (DDPG) algorithm to adapt to the highly dynamic nature of cloud computing loads and minimize energy consumption. Simulation experiments confirm that the scheduling scheme adopted in this paper is effective in reducing the energy consumption of cloud data centers and reducing the response time of tasks. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |