文章摘要
倪洪杰,张林峰,金哲豪,朱华中,刘安东.基于白鲨算法的七自由度机械臂动力学参数辨识[J].高技术通讯(中文),2024,34(5):505~514
基于白鲨算法的七自由度机械臂动力学参数辨识
Dynamic parameters identification of 7-DOF manipulator based on white shark algorithm
  
DOI:10. 3772 / j. issn. 1002-0470. 2024. 05. 007
中文关键词: 动力学模型; 摩擦模型; 激励轨迹; 参数辨识; 白鲨算法(WSO)
英文关键词: dynamic model, friction model, excitation trajectory, identification of parameters, white shark optimizer (WSO)
基金项目:
作者单位
倪洪杰 (浙江工业大学信息工程学院杭州 310023) 
张林峰  
金哲豪  
朱华中  
刘安东  
摘要点击次数: 439
全文下载次数: 509
中文摘要:
      本文提出了基于白鲨算法(WSO)的关节机器人动力学参数辨识方法。首先,利用SYMORO+软件建立了七自由度机械臂的动力学模型并将其转换为可辨识模型。其次,利用关节机器人的性质提取摩擦力矩进行摩擦模型辨识。然后,设计激励轨迹并让机器人跟踪该轨迹,用辨识摩擦模型计算关节力矩信号中的摩擦项并补偿。进而,采用最小二乘法(LS)估计器确定白鲨算法的搜索空间,并由白鲨算法迭代获得最优动力学参数。最后,在Franka协作臂进行了实验验证,结果表明所提方法相较于传统算法在规避局部最优解方面具有更好的表现,且得到的参数更准确。
英文摘要:
      A dynamic parameter identification of joint robots based on white shark optimizer (WSO) is proposed. Firstly, the dynamic model of the 7-DOF manipulator is established by using SYMORO+ and converted to an identifiable model. Secondly, the friction torque is extracted by the nature of the joint robot and used for identification of friction-model. Then, the excitation trajectory is designed for the robot to track, and the friction term in the joint moment signal is calculated and compensated by using the identified friction model. Furthermore, a least squares (LS) estimator is used to determine the search space of the white shark algorithm, and the optimal dynamic parameters are obtained iteratively by the white shark algorithm. Finally, the experimental results on Franka show that the proposed method performs better than the traditional algorithm in avoiding the local optimal solution, and the parameters obtained are more accurate.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮