文章摘要
杨蘩,管俊轶,陈强.基于区域划分的多机器人任务分配及路径规划[J].高技术通讯(中文),2025,35(12):1351~1363
基于区域划分的多机器人任务分配及路径规划
Region-partitioning-based multi-robot task allocation and path planning
  
DOI:10. 3772 / j. issn. 1002-0470. 2025. 12. 008
中文关键词: 多机器人; 区域划分; 聚类算法; 鲸鱼优化; 路径规划
英文关键词: multi-robot, region partitioning, clustering algorithm, whale optimization, path planning
基金项目:
作者单位
杨蘩 (浙江工业大学信息工程学院杭州 310023) 
管俊轶  
陈强  
摘要点击次数: 34
全文下载次数: 31
中文摘要:
      针对多机器人系统任务分配及路径规划问题,本文提出基于区域划分K-means++聚类算法。首先,针对传统聚类算法耗时较长的问题,将多个目标点划分为K个簇,并采用区域划分减少多机器人任务分配过程中的聚类时间,提高聚类效率。其次,针对鲸鱼优化算法解决路径规划问题时容易过早收敛的问题,通过添加解的扰动以增加解的多样性,提高算法寻优能力,并通过减少重复计算以加快算法收敛速度。最后,创建栅格仿真环境,通过TSPLIB算例测试以及对多目标点的路径规划仿真,实验结果验证了本文所提算法的有效性。
英文摘要:
      This work provides a region-partitioning-based K-means++ clustering algorithm for task allocation and path planning in multi-robot systems. Firstly, multiple target points are divided into K clusters and region partitioning is used to reduce clustering time in the multi-robot task allocation process; then, on the basis of the whale optimization algorithm, perturbations of the solution are introduced to increase the diversity of solutions, which can effectively avoid the problem of premature convergence in path planning. Besides, reducing duplicate calculations is used to accelerate the convergence speed of the algorithm. Experimental results on the TSPLIB example and simulating path planning for several target points within a grid simulation environment demonstrate the efficiency of the proposed algorithm.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮