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Abstract

In order to improve the scheduling efficiency of photolithography, bottleneck process of wafer

fabrications in the semiconductor industry, an effective estimation of distribution algorithm is pro-

posed for scheduling problems of parallel litho machines with reticle constraints, where multiple reti-

cles are available for each reticle type. First, the scheduling problem domain of parallel litho ma-

chines is described with reticle constraints and mathematical programming formulations are put for-

ward with the objective of minimizing total weighted completion time. Second, estimation of distribu-

tion algorithm is developed with a decoding scheme specially designed to deal with the reticle con-

straints. Third, an insert-based local search with the first move strategy is introduced to enhance the

local exploitation ability of the algorithm. Finally, simulation experiments and analysis demonstrate

the effectiveness of the proposed algorithm.

Key words: semiconductor manufacturing, parallel machine scheduling, auxiliary resource

constraints, estimation of distribution algorithm

0 Introduction

The manufacturing of integrated circuits (ICs) on
silicon wafers is a complex production process. Photoli-
thography is one of the main production process steps
in the wafer fabrications. 35% to 45% of work-in-
process ( WIP) of a wafer fabrication system typically
resides in the photolithography area''’. As the bottle-
neck process of fabricating complex wafers with the
most expensive equipment, the photolithography almost
determines the throughput and the cost of semiconduc-
tor manufacturing' >’ .

A mould used to produce chips is called a reticle,
which must be on the litho machine for the duration of
a wafer lot’ s processing. Reticles can be thought of as
auxiliary resource constraints in the photolithography
process. ICs are built by repeatedly constructing layers
with desired properties on the silicon wafer’ s surface.
Every layer of each product can require its own unique
reticle and a set of reticles for a single product can cost
well over MYM150 K. In this paper, photolithography
scheduling motivates our investigation into parallel litho
machine scheduling in the presence of reticle con-
straints to minimize total weighted completion time,

thus improving the scheduling efficiency of photolithog-
raphy and leading to financial gains.

The scheduling problem of the photolithography
area has aroused much attention from home and abroad
researchers and has become an issue of concern in our
Ref. [ 1]

rules to assign WIP to litho machines to maximize pro-

country recently. investigated scheduling
duction volume. Ref. [3] described several heuristics
for litho machine and reticle scheduling based on ap-
propriate modifications of the apparent tardiness cost
(ATC) dispatching rule. Ref. [4] proposed two heu-
ristics and a tabu search-based post processing algo-
rithm. Ref. [5] investigated the problem of the load
balancing among litho machines and presented a novel
model. Ref. [6] solved the photolithography produc-
tion control problem based on process capability indi-
ces. Ref.[7] established a multistage mathematical
programming based scheduling approach with the ob-
jected goal of maximization of throughput, minimization
of setup cost and a balancing of machine utilization.
Ref. [8] put forward a time window rolling- and GA-
based method for the dynamic dispatching problem in
Ref. [9] introduced discrete

event simulation ( DES) and mathematical program-

photolithography area.

ming techniques into semiconductor manufacturing.
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This DES model allows a detailed problem description.
Ref. [ 10] studied non-identical parallel machines with
time constraints in semiconductor manufacturing and
developed simple heuristics. Ref. [11] solved a litho
machine scheduling formulation by using the branch-
and-cut method.

A review of the available literature indicates that
there is a dearth of research that explicitly considers
auxiliary resource constraints in photolithography. Fur-
thermore, in previous research, the general approach
for managing reticles is that the number of reticles
available is assumed to be infinite or that the number of
reticles available is assumed to be finite while only one
unique reticle is available for each type. However, in
fact, most of wafer fabs have multiple reticles available
for each type of reticle so as to provide creation of more
effective production schedules. In this study, each ret-
icle type has multiple reticles available and jobs are in-
vestigated with non-zero ready times—both of these
characteristics are inherent in semiconductor wafer
fabs.

What’ s more, some of those methods adopted in
photolithography such as discrete event simulation are
expensive and time-consuming to develop and run
while the solutions of those simple scheduling rules are
not so promising. Therefore, this paper seeks to find
an effective algorithm aiming at keeping a balance be-
tween time and solution quality. As a relatively new
population-based optimization algorithm, estimation of
distribution algorithm ( EDA) has been successfully
developed to solve a variety of optimization problems in
12140 But there has
been no research about EDA on auxiliary resource con-

academic and engineering fields

straints so far. Besides, the general method to deal
with constraint violations is that a penalty function is
added to the objective function or that infeasible solu-
tions are simply removed. However, in this article, a
specially designed decoding scheme is proposed to deal
with the reticle constraints to transform infeasible solu-
tions into feasible solutions. In addition, an insert-
based local search with the first move strategy is intro-
duced to exploit the neighborhood of the best individu-
als. Simulation results indicate that the proposed algo-
rithm can lead to satisfactory results.

1 Problem statements

The problem assumptions and notations of parallel
litho machines with reticle constraints are given as fol-
lows.

The assumptions are given as follows: (1) There
are a total of n independent jobs ( wafer lots) and m

identical litho machines. (2) Jobs can be assigned to
each of the m available litho machines. (3) Each litho
machine can only process one job at most once. In ad-
dition, once a job starts to be processed on a litho ma-
chine, it can’t be interrupted until it is finished. (4)
Each job has its own processing time, release time and
weight. (5) Each job should be processed on a certain
layer. (6) One type of reticle can only process one
certain layer. (7) The same reticle is not allowed to
be used on different litho machines in overlapping time
periods. (8) The same reticle is allowed to be used on
different litho machines in non-overlapping time peri-
ods.

In order to establish a mathematical model, the
following notations are given.

J The set of jobs or production lots;

L The set of processing layers;

0, The set of jobs which require layer [ e L processing;
i

Number of reticles available for processing layer! e L;
Jobj e J has the following parameters
P; The processing time of jobj € J;
T The release time of jobj € J;
The weight (priority) of jobj € J;
C The time at which jobj e J finishes its required pro-
cessing;
The total number of litho machines;
Binary variables
x; If job i immediately precedes job j on the same litho

machine, x, = 1; otherwise, x,. = 0.
9 i 9 b ]

If job i immediately precedes jobjon the same reticle,
e; = 1; otherwise, e; = 0.

Vied, Vjes, Viel:i#j
Dummy variable .

A job whose processing time, ready time, and weight
jobO  are set equal to O each. Thus, it can indicate both the
starting and finishing of job processing on each litho

machine and each reticle.

According to the above assumptions and nota-
tions, the following mathematical model is given.

An objective of the scheduling problem is to mini-
mize total weighted completion time (TWCT) .

minTWCT = min > w,C;

iel

Eqs(1) and (2) indicate that jobs are assigned to

each of the m available litho machines:

Xy =M (1)
jel: j#0
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Xy < m (2)

jel: j#0
Eqs(3) and (4) indicate litho machine assign-
ment and job sequencing for jobs on the same litho ma-

chine .
> ox;=1 Viel:i#0 (3)
jel:j#i
x;le VieJ:i#0 (4)
jel:j#i

Eqs(5) and (6) indicate that jobs require layer

I e L processing are assigned to each of the n, available

reticles :
e, <n Ylel (5)
jed: j#0
> ep<n Yliel (6)
jed: j#0

Eqs(7) and (8) indicate reticle assignment and
job sequencing for jobs on the same reticle ;

Vied:i#0, VYieL (7)

e; = 1
jebdp j#i

e, =1 Vied:i#0, Viel (8)

jedy: j#i
Eq. (9) shows how job i’ s completion time C; is

determined ;
C: - C.f + (M - ker?;il?#o{rk +pk} +pj)xij
<M - kenjnzlkn#oirk +py
Vie],VjeJ'J'?éO i~ )
InEq. (9), M = maxir} + > p,
jel
(i.e. blg M)

Eq. (10) ensures that if two jobs require the same
reticle, one of the jobs should complete its processing
before the other job starts its processing

Com G+ O = min Ire + pud +2)e

<M- min {r, +p,}
kel: k#0
Vied, Vjed, YlielL:i*j (10)

2 Proposed estimation of distribution algo-
rithm

As a relatively new paradigm in the field of evolu-
tionary computation, estimation of distribution algo-
rithm employs explicit probability distributions in opti-

mization' "

2.1 Encoding schemes

Every individual of the population denotes a solu-
tion, which is represented by a sequence of all the job
numbers as 7 = {7, ,7,, "7, 7, to determine
the schedule order of all the jobs where 7, e Jis the
ith job in 77. For example, a solution 77 = {1,2,5,4,

3,0} implies that job 1 is scheduled first, and next are

job 2, job 5, job 4 and job 3 in sequence. Job 0 is the
last job to be scheduled.

2.2 Decoding schemes

To decode a sequence is to arrange the machines
for all the jobs and determine the processing order in
each machine. In this paper, a schedule is feasible on-
ly if the auxiliary resource constraints are not violated.

The following variables and definitions are used
for the method.

Let #] and ¢ represent the beginning and ending
Based on this, the
definition about intersection is given:

If the time period A[ £}, ] and B[ ¢5, 15 ] satisfy ¢}

time of time period A respectively.

< th and 1§ > 1}, then A and B have intersection
I[ max(¢},65) ,min(¢¥ ¢%) ] and denote it asA N B =
L

s: the first machine completes its required work-
load.

r’ . the time at which s becomes available.

J = §7Tj| 1 <j < i} N§,: the set of jobs that ap-
pear before position i and require layer [ processing as
r; does.

[=1[¢

. tii] : the time period that 7, occupies
the reticle which can process layer [.

= [t7T N ¢ 1. the time period that m; € J' occu-
pies the reticle which can process layer L.

N(I)

the number of reticles occupied during
I,

Based on the above variables, definitions and se-
quence 77, the decoding heuristic is described as fol-
lows.

Step 1: For job 77; € J in the ith position in se-
quence 177, assign the machine s to it. Compute parame-
teraasa = max{r' ,r_}|.

Step 2: Initialize I = [a,a + P, 1, [C
Pay» C. ] and N(I_ ) = 0. According to the above defl—
nition of the 1nterseet10n, for each 7, € J', 1f]m NI #
d),update[ = I NI, N(I, ) = N(I, ) + 1.

Step 3: For each m e ), defineK = {7 | j <k
< i N §, as the set of JObS that appear before position
i and after position j and require layer [ processing as 7,

does. Then, for each 7r; € J', do Step 4.
Step 4 : For each 77, € K, it NI, #d, update

I =1, N1, N(1)=NI)+1.
Step 5: If ma;g%N(Im)} > n,, then 77 = arg
7Tj€

ma;g{ N( Im) | and go to Step 6. Otherwise, go to Step
7.

Step 6: Define set Q = {m"}. For each 7; e
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J'/m let I, = [Cﬁ/ =D CW/_} S NI # ¢,
then ) = Q U {m;}. And go to Step 8.
Step7: C, =a+p,,J=J/m and go to step 9.
Step 8: Compute a = gleig{ Cm} and go to step 2.

Step 9: If J # ¢, 2o to step 1. Otherwise, stop.

2.3 Population initialization

In order to guarantee the diversity of the initial
population, initial random population of popsize indi-
viduals are used which are distributed uniformly.

2.4 Probability model

Different from the Genetic algorithm ( GA) that
produces offspring through crossover and mutation oper-
ators, EDA does it by sampling according to a proba-
bility model. So, the probability model has a great
effect on the performance of EDA. In this paper, the
probability model is designed as a probability matrix P.
The element p;(gen) of the probability matrix P repre-
sents the probability that job j appears before or in posi-
tion 7 of the solution sequence at generation gen. The
value of p; refers to the importance of a job when deci-
ding the scheduling order.

The initial population with popsize individuals de-
termines the superior sub-population that consists of the
best SP solutions, where SP = 1 X popsize, and 1 is a
parameter representing the proportion of the superior
sub-population in the whole population. Then the prob-

ability matrix P is initialized according to
(B .
pij<0) i xSP ;],‘j, Vi, (11)

where [} is the following indicator function of the sth in-

dividual in the superior subpopulation.

. _ [1, if job j appears before or in position i

i {O, else }

In each generation of EDA, the new individuals
are generated via sampling the solution space according
to the probability matrix P. For every position i, jobjis
selected with a probability p;. If job j has already ap-
peared, it means that job j has been scheduled. Then,
the whole jth column of probability matrix P will be set
as zero and all the elements of P will be normalized to
maintain that each row sums up to 1. In such a way,
an individual is constructed until all the jobs appear in
the sequence. In EDA, a population with popsize indi-
viduals is generated.

2.5 Updating mechanism
A new population with popsize individuals deter-
mines the superior sub - population that consists of the

best SP solutions. And then probability matrix P is up-
dated according to

«
pij<gen +1) = (1 - oz)pl:/-(gen) + % SP

i
sp
WY (12)
where @ € (0,1) is the learning rate of P.
The updating process can be regarded as a kind of
increased learning, where the second term on the right

hand side of the equation represents learning informa-
tion from the superior sub-population.

2.6 Insert-based local search with the first move
strategy

As EDA pays more attention to global exploration
while its exploitation capability is relatively limited, an
effective EDA should balance the exploration and the
exploitation abilities. In order to enhance the local ex-
ploitation ability of the algorithm, an insert-based local
search with the first move strategy is introduced.

... (gen) represents the best individual found
till the genth generation. The details are described as
follows ;

Step 1: Choose u and v randomly (u # v) , 7' =
Insert (), (gen) ,u,v). 1f(a") < f(m),.(gen)),
then 7)., (gen) = 7" and stop;

Step 2: iter = 1;

Step 2. 1; Choose u and v randomly (u # v) , 7'
= Insert(a" ,u,v) ;

Step 2. 2: If f(a™) < f(ar,.,(gen)), then

0 Al
T local ( gen) =T and StOp 5

Step 2.3 If f(7™") < f(#"), then 7" = 7',

Step 2.4 iter = iter + 1;

Step 2.5 If iter < (n -
2.1; otherwise, stop.

(n-1)), then go to step

2.7 Procedure of proposed EDA

Step 1. Initialize the population according to 2.3
and initialize the probability matrix P according to 2.
4.

Step 2: Sample the probability model to generate
new population according to 2. 4 and select superior
sub-population.

Step 3: Update the probability matrix P according
to 2.5.

Step 4: Perform the local search according to
2.6.

Step 5: If the termination criterion is not met, go
to step 2; otherwise, stop.
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3 Simulation and analysis

In this section, in order to evaluate the computa-
tional results of EDA and EDA with the local search,
the two algorithms are compared with GA and the parti-
cle swarm optimization ( PSO ). The performance
measure employed in our numerical study is the aver-
age value of TWCT. All the algorithms are run on a
1. 86GHz portable computer with 896MB of RAM run-

ning Windows XP professional. The codes are written
in C ++ language.

3.1 Datasets

Since there are no standard test data in the open
literature, the test problems are randomly generated on
the basis of the following factors;

1. number of jobs or wafer lots ( n ),

2. number of machines ( m ),

3. number of reticles available for processing lay-
erl (n,;).

For the set of test instances, the level settings for
each factor are: 3 levels for n, 2 for m, and 2 for n,.
For instance, a problem denoted as n10m2a represents
n =10, m =2andn, = [R,/3] +1, while a problem
denoted as n10m2b represents n =10, m =2 and n, =
[R,/5] + 1. And for each parameter combination, 10
instances will be generated randomly according to the
parameter settings in Tablel. This results in a total of
120 test problems.

Table 1  Parameters for the test data
n 10, 20, 50
m [n/10] x2,[n/10] x 3

number. of the set of (/A +1
processing layers L

[R/3] +1, [R/5] +1, R,: number

n
! of jobs requiring layer [ processing

P ing ti f job

.rocessmg ime of jo U[45.75]

Js P./'

Weight of job j, w; U[1,20]

50% are generated from U [ 1,
360 ], while the remaining 50%

T

J have r; =0

Release time of job j,

3.2 Parameters setting

EDA contains several key parameters: popsize
(the population size ), n (the parameter associated
with the superior sub-population), « (the learning
rate). To investigate the influence of these parameters
on the performance of EDA | the Taguchi method of de-

sign of experiment is implemented by using a moderate-
scale problem n20m4a.

For each parameter combination, EDA with local
search operator is run 20 times independently and the
average response variable ( ARV) value is the average
value of TWCT obtained by the proposed EDA. Ac-
cording to the number of parameters and the number of
factor levels, the orthogonal array L,s(5”) is chosen.
That is, the total number of treatment is 25, the num-
ber of parameters is 3, and the number of factor levels
is 5. Different combinations of these parameter values
are listed in Table 2. The orthogonal array and the ob-
tained ARV values are listed in Table 3.

Table 2 Parameter levels

Factor levels
Parameters

1 2 3 4 5
popsize 30 40 50 60 70
n 0.1 0.2 0.3 0.4 0.5
a 0.1 0.3 0.5 0.7 0.9

Table 3 Orthogonal table and ARV values

Experiment Factor
l\?umber popsize n o’ ARV

1 1 1 1 30565.35
2 1 2 2 30567.8
3 1 3 3 30556.55
4 1 4 4 30561. 15
5 1 5 5 30586

6 2 1 2 30565.9
7 2 2 3 30572.55
8 2 3 4 30544.55
9 2 4 5 30564. 1
10 2 5 1 30548. 4
11 3 1 3 30547.85
12 3 2 4 30598.75
13 3 3 5 30580. 05
14 3 4 1 30570. 15
15 3 5 2 30557.6
16 4 | 4 30547.75
17 4 2 5 30570.9
18 4 3 1 30560.9
19 4 4 2 30564.75
20 4 5 3 30572.45
21 5 1 5 30571.9
22 5 2 1 30564. 15
23 5 3 2 30560.6
24 5 4 3 30566.9
25 5 5 4 30559.7
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According to the orthogonal table and the ARV
values, the response values of each parameter listed in
Table 4 can be obtained. Then, according to the re-
sponse values, the trend of each factor level is illustra-
ted in Fig. 1.

Table 4 Response table

level popsize n !
1 30567.37 30559.75 30561.79
2 30559.1 30574. 83 30563. 33
3 30570. 88 30560. 53 30563. 26
4 30563. 35 30565.41 30562. 38
5 30564. 65 30564. 83 30574.59
30576 30576
30571+ 30571+
30566 - 30566 -
30561 30561
30556 30556 :
30 40 50 60 70 01 02 03 04 05
(a) popsize b) 7
30576
30571
30566
30561
L 01 03 05 07 09
©) a

Fig.1 Factor level trend of the parameters

According to the above analysis, a good choice of
parameter combination is suggested as popsize = 40, 5

=0.1, « = 0. 1.

3.3 Computational results

The average TWCT value and CPU time of 10 in-
stances under 12 problems obtained by the four algo-
rithms after 500 generations are listed in Table 5,
where EDA represents the general EDA algorithm and
EDA + LS stands for EDA with the local search opera-
tor. Both GA and PSO are of general procedure with
the decoding scheme the same as the one proposed in
this paper. The parameters for GA and PSO are set as
follows: (1) For GA, popsize =60, crossover proba-
bility P, = 0.6, mutation probability P, = 0.25,
where the parameters are also set by the Taguchi meth-
od of design of experiment using the problem n20m4a.
(2) For PSO, popsize =70, learning factorsc, = ¢, =
0.2, inertia weight w is initially set as 0.9 and then
linearly decreased to 0.4 according to the number of it-
erations , where popsize is set by experiment and the other

. e T16]
parameters are set according to general conditions'®’.

As can be seen from Table 5, although GA and
PSO appear more efficient in terms of CPU time be-
cause it requires a linear time to create new individuals
for GA and PSO while this task requires O( N*) time
for EDA, EDA is better than GA and PSO in terms of
solution quality. Besides, the solution quality of GA
and PSO can be hardly improved even if they use the

Table 5 The computational results

Problen EDA EDA +18 GA PSO
TWCT  CPU(s) TWCT  CPU(s) TWCT  CPU(s) TWCT  CPU(s)

nlOm2a  18923.0  0.30 18921.0  0.39 18967.7  0.23 18958.3  0.23
nlOm2b  16644.0 0.3l 16616.9  0.39 16804.7  0.23 16710.6  0.23
nlOm3a  15861.9  0.31 15784.7  0.41 15884. 1 0.25 15873.7  0.24
nl0m3b  17369. 1 0.31 17281.8  0.42 17298.2  0.26 17419.3  0.24
20mda  33062.2 1.22  32497.1 2.78  34675.1 0.52  34350.2  0.54
n20mdb  35681.0 1.22  34734.4  2.79  37833.3  0.54  36131.2  0.54
n20m6a  32775.5 .23 32138.8  2.99  33363.4  0.57  33206.8  0.60
n20méb  35792.4 1.25  34941.7  3.14  36163.9  0.60  36288.4 0.6l
n50ml0a  108477.0  13.37  95771.6  55.38  112651.4  2.40  110139.7  2.60
nS0mIOb  108489.3  13.36  95277.6  56.42  112424.0  2.43  112579.2  2.63
nSOmlSa  97688.7  13.48  87015.0  61.72  96507.1 2.73  100258.5  2.84
n50mlSh  98634.6  13.55  88442.3  66.29  98239.8  2.84  100551.6  2.95
average  51616.6  4.99  47451.9  21.09  52567.7 .13 52705.6 1.19
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same CPU time as EDA does because their convergence
curves become flat after 500 generations as presented
in Fig.2 and Fig. 3. Furthermore, the performance of
EDA can be greatly improved by adding the local
search to it. Obviously, EDA + LS performs the best
for all the problems and its CPU time is still accepta-
ble.

66000 -
. e EDA
62000 - '.\ — EDA+LS
. 58000
O
2

& 540001

50000 - EDA+LS

46000

0 100 200 300 400 500
Number of generations

Fig.2 Convergence curves in solvingn, = [R,/3] +1

69000
\ e EDA
N — EDA+LS
- GA
— - PSO
EDA+LS
49000 T T : ; ]
0 100 200 300 400 500

Number of generations

Fig.3 Convergence curves in solvingn, = [R,/5] +1

Fig.2 and Fig.3 depict the convergence curves
obtained by the four algorithms for the 60 problems
withn, = [R,/3] + 1l andn, = [R,/5] + 1 respective-
ly. The vertical axis shows the average TWCT value of
60 instances for each algorithm. It can be seen from
Fig. 2 that although PSO evolves faster than the other
algorithms at first, it turns out with a premature con-
vergence. Fig.3 shows that the four algorithms are
nearly of the same convergence speed, but they end
with obvious difference in solution quality due to differ-
ent solutions at the first generation.

It’ s apparent from both Fig.2 and Fig.3 that EDA
outperforms GA and PSO in terms of solution quality.
Furthermore, EDA + LS can provide even higher quali-
ty solutions than EDA. What’ s more, the superiority
of EDA and EDA + LS to GA and PSO in solution qual-
ity is more significant in Fig.3 compared with that in
Fig. 2, which indicates that EDA and EDA + LS may
perform much better than GA and PSO when the auxil-

lary resources are more tightly constrained as the num-
ber of reticles of each type affects the availability of the
auxiliary resources. All in all, the results show that the
proposed EDA is effective, especially in solving scarce
auxiliary resources problems.

4 Conclusion

In this paper, an estimation of distribution algo-
rithm is developed to solve the scheduling problem of
parallel litho machines with reticle constraints by con-
sidering multiple reticles available for each reticle
type. An effective decoding scheme is designed for the
auxiliary resource constraints and an insert-based local
search with the first move strategy is introduced which
has been proved to be very useful. Comparisons to GA
and PSO demonstrate the effectiveness of the proposed
EDA in solving the scheduling problem in photolithog-
raphy, especially when the auxiliary resources are con-
strained more tightly.
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