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Abstract

The GM-PHD framework as recursion realization of PHD filter is extensively applied to multi-
target tracking system. A new idea of improving the estimation precision of time-varying multi-target
in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,
a novel cubature Kalman probability hypothesis density filter is designed for single sensor measure-
ment system under the Gaussian mixture framework. Second, the consistency fusion strategy for
multi-sensor measurement is proposed through constructing consistency matrix. Furthermore, to take
the advantage of consistency fusion strategy, fused measurement is introduced in the update step of
cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then
a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is
proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sen-

sor multi-target tracking.

Key words: multi-target tracking, probability hypothesis density ( PHD ), cubature Kalman
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0 Introduction

Multi-target tracking techniques are always the
hotspot research in target tracking field. The probabili-
ty hypothesis density (PHD) filter as recursion that
propagates the first-order statistical moment of random
finite sets (RFS) of states, is an attractive approach to
track unknown and time-varying targets in the presence
of measurement uncertainty, clutter, noise, and detec-
tion uncertainty'''. However, PHD filter contains mul-
tiple integrals with no closed forms in general. Due to
its inherent computational hurdle, the application and
popularization of PHD filter is limited. To solve this
problem, some researches and work mainly focus on
two categories. One of the effective implementations is
sequential Monte Carlo PHD ( SMC-PHD) filter'**’.
In the non-linear and non-Gaussian system, the rela-
tionship between PHD filter and sequential Monte Carlo
method is established through approximating PHD func-
tion by a group of random samples in state space, and
leads the integral computation to be replaced by sam-

ples mean'*’.

However, a large number of particles,
needed to ensure filtering precision in the realization of
SMC-PHD filter, lead to increase of computation cost,
and extracting multi-target estimation is an additional
cost. Moreover, the stochastic sampling mechanism of-
ten leads particle to degeneracy after a few iterations.
The adverse effect caused by particle degeneracy is
mitigated in a certain degree through re-sampling, but
the re-sampling process results in the reduction of par-
ticle diversity. In addition, an estimated state is ob-
tained through dividing the particle into different clus-
ters in SMC-PHD filter, which leads to state estimation
unreliable. The other one is Gaussian mixture PHD
(GM-PHD) filter**’ | for jointly estimating the time-
varying number of targets and their states, closed-form
recursions are given for propagating means, covari-
ance, and weights of the constituent Gaussian compo-
nent of posterior intensity, which meets three assump-
tions: (D Targets and sensor follow a linear and Gauss-
ian model. (2) The survival and detection probabilities
are independent. (3) The intensities of birth and spawn
RFSs are Gaussian mixture. In Ref. [7], Clark proved
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uniform convergence of the errors in GM-PHD filter.
Aiming at the multi-detection from a same target, Tang
derived a general multi-detection PHD update formula-
tion, and established its recursion realization under the
GM-PHD framework®'.

However, with regard to the non-linear feature of
multi-target system, assumption (1) is extended to non-
linear Gaussian model. Therefore, the non-linear filter
such as extended Kalman filter (EKF) and unscented
Kalman filter (UKF) are considered to unite the PHD
filier under the framework of Gaussian mixture """’
The implementation mechanism of EKF is to realize lo-
cal linearization of state equation and observation equa-
tion. It only calculates the posterior mean and covari-
ance accurately to the first order with all higher order
moments truncated. If the nonlinearity of estimated
system is very strong, usually EKF can not obtain good
filtering result and even lead to the filtering divergence
phenomenon'""?'. While unscented Kalman filter
(UKF) ") and cubature Kalman filter ( CKF) "™ are
both typical implementation of deterministic sampling
filter, UKF approaches nonlinear state posterior distri-
bution by UT transformation strategy, and it has higher
universality for non-linear system with Gaussian noise.
But whether the parameters are selected reasonably or
not in UKF, they may affect targets estimation preci-
sion directly. In addition, the problem that filtering va-
riance is not positive definite may occur. However, in
the implementation of CKF, a third-degree spherical-
radial cubature rule is established to compute integrals
numerically. The weights in CKF are positive to ensure
that the filtering covariance is positive definite matrix,
and it is verified that CKF is superior to UKF'"’.
Therefore, CKF is adopted to realize PHD recursion
under the framework of Gaussian mixture in this paper.

The appropriate selection of filtering algorithm
leads to the improvement of targets tracking precision.
Measurement, obtained by sensor for providing latest
information in the update step, is also an alternative vi-
tal factor to enhance estimation precision. The tech-
nique of information fusion based on multi-sensor meas-

1671 is a popular method to extend

urement system
measurement range, improve information redundancy
and credibility, through the synergy between sensors.
Therefore, a consistency fusion strategy is proposed to
process the multi-sensor measurement through con-
structing consistency matrix. On this basis, a cubature
Kalman probability hypothesis density filter based on
multi-sensor consistency fusion is proposed.

The rest of the paper is organized as follows. In
Section 1, the background information on PHD filter is

presented. Section 2 proposes a cubature Kalman prob-

ability hypothesis density ( CK-PHD) filter for single-
sensor multi-target tracking under Gaussian mixture
framework. Then, in Section 3, a consistency fusion
strategy is established for fusing multi-sensor measure-
ment through constructing consistency matrix. Further-
more, a new cubature Kalman probability hypothesis
density filter based on multi-sensor consistency fusion
(MC-CK-PHD) is proposed by introducing the fused
measurement during update step in Section 4. The pro-
posed algorithms are illustrated in Section 5 through a
simulation example. Finally, conclusions are summa-
rized in Section 6.

1 PHD filter

An optical Bayesian filter using RFS or point
process for multi-target tracking is very computationally
challenging, especially when the target number is
large. To reduce complexity, Mahler devises PHD fil-
ter as an approximation of an optimal multi-target
Bayesian filter. And it propagates the first-order statis-
tical moment of the posterior multi-target state, i. e. ,
the posterior density is propagated in PHD filter. Let
the posterior density equal to I,y (x,_, | Z,,_,) at
time k. The recursion steps of PHD filter are as fol-
lows :

® Prediction steps:

Ly (X, 1 Zl;k—l) = 'Yk(xk)
+ [jps,k(xkq Mo (2,1 x,)

+ ﬁBM/H (x, 1 x,0) ]
X Ly (o LV Zy ) dxy
(D)
where v, (x,) is the intensity of target appearing at
time k, pg,(x,,) is the target survival probability,
Jur (x, 1 x,_,) is the single target Markov transition
density, and B8,,,_,(x, | x,_,) is the intensity of spaw-
ning of target from existing ones.
e Update steps:
lyklk(xk | Zl;k) = [(1 _pl),k(xk—l))
+ 2 (Pou () f(z 1 %))/

(hey(z) +(z1 Z,y))]
X Ly (X1 Zl;k—l) (2)

where iﬂ(zk l ZI;k—l) = jpl),k Sz 1 x) 205 (x|

Z,,.), ppi(x,_,) denotes the detection probability,
f(z, 1 x,) is the single target likelihood function, A,
and ¢, (z,) are the false alarm ( clutter) intensity and
false alarm spatial density, respectively.

The expected number of targets is given by
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Ny = f[km(xkl Z, ,)dx, (3)

The PHD filter completely avoids the combinatori-
al computation arising from the unknown association of
measurements with appropriate targets. However, the
closed-form solutions of recursion in PHD filter cannot
be achieved in general which results in that it is diffi-
cult for PHD filter to realize engineering application.
And numerical integration suffers from the “curse of di-
mensionality” Sl In Ref. [3], it is shown that Gaussi-
an mixture probability hypothesis density ( GM-PHD)
filter provides a closed-form solution for multi-target
tracking without measurement-to-track data associa-

tion.

2 Cubature Kalman probability hypothesis
density filter

combining CKF with PHD under
Gaussian mixture framework, a cubature Kalman prob-
ability hypothesis density (CK-PHD) filter is proposed
for jointly estimating time-varying number and position

In this section,

of targets.

The optimal solution to solve nonlinear filtering
problem needs to get a complete description of condi-
tional probability density function. In CKF, a third-de-
gree spherical-radial cubature rule is extend to compute
a standard Gaussian weighted integral of f(x) as fol-
low, as a result, conditional posterior probability is ob-
tained" '’

1) = jf(xw(x;x,P)dx ~ 1/sz:1f(x + /PE)

gin

(4)
L = 2n denotes the number of cubature points, and n
denotes the dimension of estimated system state, &; is
the jth cubature point.

The GM-PHD filter propagates the multi-target
posterior density through Gaussian mixture compo-
nents, providing a closed-form solution under the three
assumptions. The mathematical express of the three as-
sumptions is given[m :

Suma (1 x,) = N(xys fiox,, Q) (5)

g.(z, 1 x,) = N(z;;hx,,R),) (6)
where, N( +;%,P) denotes the Gaussian density with
mean £ and covariance P, f, () denotes the state
transfer matrix, h,( +) denotes the measurement ma-
trix, @, , and R, denotes the system noise covariance
and the measurement noise covariance, respectively.

Psu (%) = psy (7)

Poi(X,) = pp, (8)

‘/V i Al
yi(a) = Y "o Ny £, P (9)

gk ;
ZB ()N(x}.’f;klxkl
+vﬁk1’QﬁA1) (10)

where, J and w are the number and the weight of

Bura (x, 1 x,,)

Gaussian mixture components, respectively.
Assume the posterior intensity is expressed as

Jh- 1
Ly (X, Zl;kfl) = z iz

P"..,), is a Gaussian mixture at time k — 1, and the

N('xlmxk k-1

realization of GM-PHD filter is given as follows:
® Prediction steps:
The predicted intensity for time £ is also a Gaussi-
an mixture and is given by
L (X5 V24 y) = Lo (x5, 1 Zy )
+ Ly hr-1 (x| Z ., ) +vy,.(x,)

(11)
where
] alt 12
L mk-1 (x, 1 Z . ) = z kl N(xka Em 1,P(s ;Luf 1
(12)
bj ] ;
[B,k\k—l('xk | Zl;lc—l) Z - Z " k (U;;{ZN(xk;
Ap(alkl\)k 1’P(lm 1) (13>
Nklk—l = Nk-l(Ps,k + Ziw ) + Z (l)
(14)
-’zg ZII, 15 f;;fk[l)kq , Pg‘f;rlk—l and P;sz[l)kq are given as fol-
low:
Evaluating propagated cubature points X;"Zl il s
Pl(ft-_)nk-] = Sl(:i)l‘lk—l (S;l-)nk-l )T . (15)
‘X;*?‘)‘llk L= S;LI)IIA 15“}3 k-1 +-7‘A7£l-)nk-| (16)
X\ = X)) (17)
where ¢ = /L/z[a]j, j=1,2,-L, [8], e R

denotes the jth column in matrix [I"™, - I""] €
()’tnxL
State one-step prediction and its error covariance
of the existing targets
a (D) _ 0!
xslmk = j=1 Xj,lk\k—l/L (18)
O _ ) ) T
Pyl = Zj X (X lk\kl /L
a(i) (i) T
— XS hk- 1(xs Mie1) +ka_, (19)
State one-step prediction and its error covariance
of the spawned targets

NG - Ly
x[}lklk 1= 21 IX,' vt/ L (20)
(i) (i) () T
P,Bl,klk—l = Z X] lkuf 1 lk\k 1 /L
"(l) a(i) T 2
— Xp hk- l(xﬁk\k ) +ka_, (21)

e Update steps:
As the predicted intensity for time k is a Gaussian

Tk
Z,.,) = zii“ A\A1N<xA,

mixture 2, , (x, 1

a (i) (i)
X P

Gaussian mixture and is given by

, the posterior intensity at time £ is also a
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2(x, | Zm) = (1 _PD,/c>£/r\k—l(xk| Zl;k—l)
+ Z[D,k(xk;zk> (22)

zeZy
‘l 1 1
fD,/f(xk;zk) ZLMI ()(ZA>N(xk’xlr\k5P/<r\k)
(23)
(i)( ) = P/)Aw;z 1(]A)(ZA)
Wy (Z) = Jhi k-1 (1) )
k. (2,) +Pnk2 g (2)
(24)
<l)(zk> = N(z,; ZI(L\LI)‘ I,Pzz Hk-1 (25)
J 1
N, =Ny (1 - ~Pos) * 2 2 o ()(ZA)
zeZy
(26)

£ and P{|) are given as follows:

Evaluating propagated cubature points Z e and

observation one-step prediction 2\ |

Pl(rliz 1= fji RS (S;(JZ 1)T (27)
X,m 1 15|11)L &+ X AM 1 (28)
Z h(Xm 1 (29)
B = X 2/ (30)
Zphi 2j=12,-<,’;k,l/L (31)

. . . . )
Evaluating innovation error covariance P, | and

cross-covariance P;’)M . between state and observation

m 1 2 Z<k)\k 1(Z;,ik)\k-1 YL

AIi\Lk (&) + lek (32)

L ali
Ptzﬁ\kl = 2 ,u“( kl/rl)T/LxI(.Ikl &))"
(33)

K" = Pl [P ] (34)
fﬁfi = f;ffi i+ K<l [z, - hk(x/\l(c\iic—l )] (35)
Py = Py =Py (PO ) T (P )T
(36)
Note that 2|} | consists of two terms 2;511%_1 and
2@,,‘,7, due, respectively, to the measurement predic-
tion of Gaussian component of the existing targets and
the spawned targets. £\, consists of two terms J?:éf,)dk_,
and f;‘f;clk—l which denote the state prediction of Gaussi-
an component of the existing targets and the spawned
targets, respectively.

3 Consistency fusion strategy

In the situation of multi-sensor measurement sys-
tem, redundant and complementary information is ex-
tracted and utilized as much as possible to reduce the
dependence of measurement noise statistics informa-
tion. In this paper, the consistency distance and con-
sistency matrix is built to characterize the mutual sup-
port degree between multi-sensor measurements. On

this basis, the consistency fusion strategy for multi-sen-
sor measurement is established through constructing
consistency matrix. The elements in the matrix denote
the mutual support degree. The measurement weights
are allocated legitimately to utilize measurement effec-
tively in fusion process.

Considering the matrix of mutual support degree
between multi-sensor measurements, the graphical rep-

resentation of confidence distance is in Fig. 1, and the
equation is defined as
m;{ = ”z;._z;” i=1,2,---,n;j=l,2,---,n
(37)
2
1 9\ = 1
8 =
0 \liﬁ‘é»/\g |
7 /i
A 4 j
B B
2 ; ; ;
) -1 0 1 2

Fig.1 Consistency distance
From the above expressions, difference between
the two measurements is greater if R/ has a bigger val-
ue, which indicates that the mutual support degree is
weaker. Conversely, the mutual support degree is
stronger. Aiming at normalizing mutual support degree
of 7, and Z, , the consistency distance @ is defined on
the basis of 7.
(D inverse proportion relationship with R7; @ @7
[0,1],

vantage of the membership function in fuzzy set theory,

Zmeets the following two conditions

to make sure that data processing takes the ad-

therefore the absolutization of mutual support degree of
weight information is avoided availably. Based on the

above considerations, mathematical expression of the

consistency distance @/ is expressed as
= (max{N7} - NRY)/ max{ N/} (38)
Note that max { N} | is the maximum value in N.
When RY is the maximum, @! is equivalent to zero.
That is to say, the similarity level between z, and 2, is
minimum; @] gradually increases along with the de-
crease of N! since z, is similar to itself in the most de-
gree. @} is equaling to 1 indicates that the level of sim-
ilarity is the greatest. Clearly, ®/ in Eq. (38) meets
the two basic conditions. Considering that @ can only
measure the level of similarity between z, and z,, and
can not reflect the overall support level between z, and
all the elements in {z,}. Set ), as the overall similarity
level .
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mo= 2,6 (39)
) is known as the coefficient for weight,

with Eq. (39), 7, = [7) 7

ted as a consistency vector to characterize the overall

combined

T .
7, ] is construc-

level of the similarity among all elements. As a result,
calculation of 7, is conducted as

= Yo (40)
where the consistency matrix ¥, and weight coefficient

vector Q) are eXpreSSed
11 21 nl

h . e A
12 22 n2

v - ®;, ®k o8, (41)
@ln @211 .. @mz

@ = (o o o o] (42)

The numerical characteristic of the elements in W,
shows ; all diagonal elements are equal to 1, so W, is a
positive definite symmetric matrix. The other elements
in this matrix are positive and not greater than 1. Ac-
cording to Perron-Frobenius theorem: there is a maxi-
mum modulus eigenvalue A, > 0. Only when all ele-

ments in eigenvector corresponding to eigenvalue A, are

positive, A,8, = W,B8,. Leta, = B,, combined with
Eq. (40), then
n = A (43)

Since A, is a non-zero real constant, 73, o «.

Normalize the elements of ak

@, = 0‘1/ 2 (44)
Considering that the relationship between %, and
a, is positive proportion, o, denotes the overall level of
similarity that z, is supported by all elements in meas-
urement set {z,|. Namely, a; is the weight of z,. On
this basis, current measurement fusion 2’, is calculated
as
2= Y g (45)
The fused measurement noise variance is
gr= > (&-z)(8-2)"/n (46)
Combining the above analysis, the pseudo-code of
consistency fusion is given as follows;

Algorithm 1. Consistency fusion

given the multi-sensor measurement
{zj 1z, = h(x,) +v,i =12, ,N|
calculate the confidence distance
fori =1, ,N
forj =1,---,N
N = (5

-2)" (5 - 4)/(R; +R,)

end

end

calculate the consistency distance

fori =1, N
forj = 1 N
=1 - R/ max(max(RY))
end
end

find the maximum eigenvalue and corresponding eigenvector
of consistency distance
(B, A] = eig(W))
m = max(max(A))
calculate the weight w}, of z; , and normalization
fori =1,---,N
a, = abs(B(i,m))
end
o = al/ 2 ;\:la
measurement fusion

for i

4 Cubature Kalman probability hypothesis

density filter based on multi-sensor con-
sistency fusion

A CK-PHD filter is extended to multi-sensor case.
Assume that there are N sensors and that the measure-
ment noises with the same covariance are irrelevant
Gaussian white noise. Then consistency fusion strategy
is designed to obtain fusion measurement. Based on the
above work, a cubature Kalman probability hypothesis
density filter based on multi-sensor consistency fusion
is proposed. The key steps of MC-CK-PHD filter are
given as follows:

Algorithm 2 Cubature Kalman probability hypothesis densi-

ty filter based on multi-sensor consistency fusion

given {w.”, m\”, P\”,} /55" and the measurement sel Z,.
step 1. prediction for birth targets
i =0.
forj =1,---,J,,
i; =7+1
Wi =0yl X = X0, P =P
end

forj=1,,J,,

Jorl=1,-- ], _,
i:=1+1
w/(lil)r] w/(”lwéjir
xA/E\’I)L 1= ;m 11(;3( 1+V;(m 1
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(i) - 0O (D HoT
Pkl/.'fl =0 -1 f(m 1P

Yk Bik-1J glk-1

end
end
forj=1,--,i

2()
il 1] Ml ]
setu: = ,C. =
w 0 R,

use the third-degree spherlcal radlal cubature rule

to generate a set of cubature points with mean u,

covariance C, and weights denoted by {y\”,
(D
M }1
[©) (0 (0
Zypor: =k (X .87 ) -, L

1)212 1 Z[:W'IZ;\IA 1
Pl =3 ! (o ~mili) (i — i)
PEf)k = zf‘:lﬂl(zl(u\l;cfl fl(ﬂ 1)(115\12 1 7]1(le3« 1>T
K(/) =P(/)L [Pz(z/>h] -
Pw —Piju)f 1 Ki”[ m]l

end

Step 2. construction of existing target components

forj=1,--,i
1:=1+1
wifi,I :P.S,kwlii)llkfl
£ Pi, 0 0
setu: = 0 ], C:= 0 9., 0
0 0 0 R,

use the third-degree spherical-radial cubature rule

to generate a set of cubature points with mean u,

. . 1
covariance C, and weights denoted by {y\”,
L
l‘- }11
— [©) Q)]
xl\k ve=f (X, v ) -, L
[©)] _ [©) [©)
Zpr s =y (g 138L ), -, L
20) La(l)
Xilg-1 = 2/ M E
P =Sl (e 20 ) (e -2 )"
Klk-1 = Zai=1M \Xppp_g Klk-1 k-1 \k 1

— L ()
nl\'lkfl = 21:1[‘ Zhik-1
(). L (0 () () () T
Pz:,k_zl:l," (Zoieor =Mitke—1 ) (Zareoy = Wik

0 Lo 1o () (n T
Pai,k =2 m (g —xku.»-])(zmk-l _nk\k-l)

K¢ = PO,[PY,)"
@ _ pU () G 7T
Py, = Py, - K, [P/L]
end
o =1

Step 3. update
fori =1,--,J,,

= (1- p[),k)wlf\jifl

"(I) a(i) 0 _ ()
Xy = X, P o= Py

end
l: = 0
for eachz € Z,

l; =/+1
forj =1, Jy,

(U =1+
w, kl k=1%]

- (@)
= pDI.wML N(z, snm 1P A)

_ () ()
= xllkl + K (z, -y

(W k-14)  — pU)
P, =Py,

Ay j
x](t Tkl k=1+7)

end

forj = 1,-+,Jy,.

w’EUA»M»N/’) . :a),iljm"lm/(l(,\,(z) + Z{I;\lk—lwl(fl/k\k%*j) )
end

Jur = Wior + i

(i) ali) ) J
output {w,”,, £,",, P,", 1%,

S Simulation results and analysis

The performance of the proposed algorithm is veri-
fied through simulation example. A two-dimensional
scenario with unknown and time varying number of tar-
gets measured in clutter is considered in this study.
And the surveillance region is [ — 120, 120 ] x
[ -120,120] (the region showed in figures is [ —60,
60] x[ -120,120]). The state vector isx, = (x, %,
Ye i) ',
direction state and vertical direction state, respective-
ly. Target 1 appeared with x!" = (60 - 1.5 15
1.5)" at time k = 1, and terminated at time & = 60.
Target 2 withx{}’ = (30 2 —-100 2.5)" was born
at timek = 21, terminated at time k£ = 80, and it
spawns target 5 at time k = 51. Target 3 with x{)) =
(45 - 1.5 20 -1.5)" and target 4 with x|’ =
(15 1.5 =70 1.5)" was born at time & = 31 and
k = 41 respectively, and both terminated at time &k =

(%, %,) " and (y, y,)" denote the horizontal

100. The state transfer matrix F =
1 sin(w)/w 0 - (1 -cos(w))/w
0 cos(w) 0 - sin(w)
0 (1-cos(w))/w 1 sin(w)/w ’
0 sin(w) 0 cos(w)

Table 1  The rest initial value of parameters in the algorithm

Parameters vy Ps B Po A ¢ ZLoio
Initial value 3 0.99 1 0.98 3 1/160° 1

120
— True trajectories
80 I Measurements

'S
S

A
S

Vertical direction (m)
)

S
3

-120 - - - - ‘
-60 -40 -20 0 20 40 60
Horizontal direction (m)

Fig.2 Measurement and true trajectories
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where, @ =0.025rad/s is the angular acceleration of
targets, T = 1 is the sampling period. pg, = 0.99,
poy =0.98, U =5, =100, T prun = 10e7".

max

120

—— True trajectories
o Estimated trajectories of EK-PHD filter

o0
(=]

40}

-60 -40 -20 0 20 40 60
Horizontal direction (m)

(a) EK-PHD
120 = =
—— True trajectories
8ok © Estimated trajectories UK-PHD filter l

~ b [Rq,

é 3

£

k5t

=

)

<

-2

b

o

>

-120

-60 -40 -20 0 20 40 60
Horizontal direction (m)

(b) UK-PHD
120 : : :
True trajectories
80l o Estimated number of CK-PHD filter

E
|
k3]
£ o . 1
E Seg b
S a0} 1
b=
o
> 80}
-120 - - , - .
-60 -40 -20 0 20 40 60
Horizontal direction (m)
(¢) CK-PHD
120
— True trajectoris
80 o Estimated trajectoris of MC-CK-PHD filter

Vertical direction (m)
)

60 40 20 0 20 40 60
Horizontal direction (m)
(d) MC-CK-PHD
Fig.3 The target trajectories and their estimations of (a) EK-
PHD, (b) UK-PHD, (c¢) CK-PHD and (d) MC-CK-
PHD

The proposed algorithm is compared with EK-PHD
filter and UK-PHD filter presented in Ref. [5]. The
results and analysis of simulation are given below.

The measurement and the real trajectories of the
targets are given in Fig. 2. Note that square marks and
circle marks denote the initial position and final posi-
tion of targets, respectively.

To verify the effectiveness of the proposed algo-
rithm, Fig. 3 gives the target trajectories and their esti-
mations of (a) EK-PHD, (b) UK-PHD, (c¢) CK-
PHD and (d) MC-CK-PHD. The figures illustrate that
state estimation through MC-CK-PHD filter approxi-
mates real trajectories mostly.

Fig. 4 illustrates the comparison of the four algo-
rithms estimation precisions of the number of targets.
The plots demonstrate that both CK-PHD filter and
MC-CK-PHD filter are superior to EK-PHD filter and
UK-PHD filter for estimating the number of targets.
Meanwhile, the MC-CK-PHD filter is more reliable
than CK-PHD filter because consistency fusion strategy
in MC-CK-PHD filter makes sure that fused measure-
ment is more precise than single-sensor measurement
does. For quantitative comparison, Table 2 gives the
average estimation error of targets number through the
four algorithms after 50 simulations. It is clear that the
EK-PHD filter and UK-PHD filter have the average es-
timation error of 9.20 and 9.22 respectively, and the
error of CK-PHD filter and MC-CK-PHD filter are 8. 06
and 8. 02, respectively. The results further suggest that
the average estimation error of MC-CK-PHD filter is the
lowest, namely, MC-CK-PHD filter outperforms others
in targets number estimation.

To verify the capability of proposed algorithm more
clearly, Fig.5 gives the comparison of average OSPAs
of EK-PHD filter, UK-PHD filter, CK-PHD filter and
MC-CK-PHD filter after 50 Monte Carlo simulations. It
shows that the average OSPA of CK-PHD filter is lower
than EK-PHD’ s and UK-PHD’ s, and that the average
OSPA of MC-CK-PHD filter is the smallest in all.
Fig. 5 also illustrates that both CK-PHD filter and MC-
CK-PHD filter have the advantage of position estima-
tion precision. Further, MC-CK-PHD filter is superior
to CK-PHD filter. Table 3 gives the comparison of the
total OSPAs of all step time.
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Fig.4 Real number of targets and their estimation of (a) EK-
PHD, (b) UK-PHD, (c) CK-PHD and (d) MC-CK-
PHD

Table 2 The comparison of average estimation error

of the four algorithms for targets number

Algorithms EK-PHD  UK-PHD  CK-PHD MC-CK-PHD
Average
9.20 9.22 8.06 8.02
error
3.5
—=— EK-PHD filter
3.0 f —=— UK-PHD filter
—=— CK-PHD filter
2.5 [ —— MC-CK-PHD filter
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Time step
Fig.5 The comparison of OSPAs

Table 3 The comparison of the total OSPAs of all
step time of the four algorithms

Algorithms EK-PHD  UK-PHD  CK-PHD MC-CK-PHD
OSPA. 121.8744 121.8126 103.2541 71.4176
summation

6 Conclusions

In this study, the multi-target tracking problem on
estimation precision in linear is considered under PHD
filter framework. Combined with the advantaged of
CKF, CK-PHD filter is proposed based on single-sen-
sor measurement system. And it is a generalized solu-
tion for estimating targets number and position. Fur-
thermore, a consistency fusion strategy is established,
and introduced into the CK-PHD filter. On this basis,
the implementation denoted as MC-CK-PHD filter has
been presented. Simulation results show that the CK-
PHD filter and MC-CK-PHD filter outperform the pub-
lished EK-PHD filter and UK-PHD filter in the scenar-
io with time-varying number of multi-targets. Mean-
while, the MC-CK-PHD filter is superior to CK-PHD
filter in targets number estimation and position estima-

tion.
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