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Abstract
To improve the inference efficiency of convolutional neural networks (CNN), the existing neu-

ral networks mainly adopt heuristic and dynamic programming algorithms to realize parallel schedu-
ling among operators. Heuristic scheduling algorithms can generate local optima easily, while the
dynamic programming algorithm has a long convergence time for complex structural models. This pa-
per mainly studies the parallel scheduling between operators and proposes an inter-operator parallel-
ism schedule ( IOPS) scheduling algorithm that guarantees the minimum similar execution delay.
Firstly, a graph partitioning algorithm based on the largest block is designed to split the neural net-
work model into multiple subgraphs. Then, the operators that meet the conditions is replaced ac-
cording to the defined operator replacement rules. Finally, the optimal scheduling method based on
backtracking is used to schedule the computational graph. Network models such as Inception-v3,
ResNet-50, and RandWire are selected for testing. The experimental results show that the algorithm
designed in this paper can achieve a 1. 6 × speedup compared with the existing sequential execution
methods.

Key words: compile optimization, convolutional neural network(CNN), inter-operator paral-
lelism schedule(IOPS), operator replacement

0　 Introduction

In recent years, with the widespread application
of neural networks in computer vision, speech recogni-
tion, and games, the computational complexity of their
models has increased accordingly. Currently, industry
and academia are concerned with the efficient use of
hardware resources. In order to make full use of hard-
ware resources and reduce the training and inference
time of the model, existing methods have been ex-
plored in many aspects. Ref. [1] used model pruning
to reduce the number of effective weights and the accu-
racy of the parameters. Ref. [2] proposed parameter
quantization to reduce the number of bits per weight,
thus accelerating inference efficiency. Ref. [3] adopt-
ed data and model parallelization[4] to train and infer
network models. Multi-operator parallelism has achieved
excellent optimization results as it can comprehensively
consider various optimization factors.

At present, there are two research directions of

multi-operator parallelism: intra-operator parallelism
and inter-operator parallelism. Intra-operator parallel-
ism mainly uses the underlying acceleration library
cuDNN[5] provided by hardware suppliers to find the
optimal parameters of a single operator in the network
structure under the current configuration. However, in-
tra-operator parallelism can not provide maximum par-
allelism, which results in suboptimal model runtime
performance. Secondly, the serial execution employed
by the underlying acceleration units of the deep learn-
ing framework[6] misses the opportunity to further im-
prove performance. A series of optimization algo-
rithms[7] can be used between operators to effectively
combine intra-operator and inter-operator parallelism.
Therefore, many scholars have conducted much re-
search on the inter-operator of computational graphs.

The existing inter-operator parallel methods main-
ly use heuristic algorithms to realize parallel scheduling
of multiple neural network operators. Ref. [8] pro-
posed an improved heuristic graph partitioning algo-
rithm machine learning-Metis (ML), which considers
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the memory multiplexing and intermediate data from
data flow graphs during partitioning. It provides an ef-
ficient parallel strategy for deep neural networks
(DNN). Ref. [9] used graph substitution to optimize
the computation graph. Compared with the original com-
putation graph, the optimized computation graph will
optimize the scheduling process in parallel and uses a
sampling heuristic algorithm to speed up the search
process. However, the greedy parallelism of the heu-
ristic algorithm will lead to a suboptimal scheduling
scheme. The parallelism of algorithm optimization will
have a good effect on the network of medium-structured
networks, but the effects are not obvious for small net-
works.

Ref. [ 10 ] introduced a strategy to parallelize
DNNs in the Sample, Operator, Attribute, and Param-
eter dimensions, which is a more comprehensive DNN
parallelization strategy search space. It uses a depth-
first search to explore the space, but its search model
optimal strategy takes 0. 8 and 18 h respectively. Fur-
thermore, machine learning practitioners[11] rely on
their domain knowledge and use manual cues ( e. g. ,
explicit device placement strategies) to guide compiler
decisions. Reinforcement learning-based (RL) meth-
ods[12] outperformed human experts and heuristics.
However, they require many computing resources and
training time to find the optimal schedule.

To sum up, the methods mentioned above use dif-
ferent heuristic algorithms to seek the optimal solution,
but the solution result is not necessarily the optimal so-
lution in the global scope. Using methods based on ma-
chine learning and dynamic programming to expand the
search space, approximate global optimal solutions can
be obtained. However, its algorithm does not make full
use of general sub-scheduling when searching the entire
model architecture, and it is difficult to use historical
optimization results. When the model scale is enor-
mous, optimizing the entire computational graph at one
time will cause the problem of long algorithm conver-
gence time.

The rest of the paper is organized as follows. Sec-
tion 1 discusses related work, and Section 2 describes
the optimization process of this paper and the schedu-
ling problem for neural networks and details the two al-
gorithms and the parallel replacement strategy in this
paper. Section 3 describes the specific details of the
experiments in terms of the neural network, hardware
configuration, etc. , provides the experimental results
and related analysis in this paper, and finally summari-
zes the entire experiment and puts forward prospects in
Section 4.

1　 Related work

Multi-operator parallelization is a leading research
direction to achieve efficient reasoning. Operators at
different stages are scheduled in different threads. Ex-
isting research on implementing operator parallelism
mainly focuses on intra-operator parallelism and inter-
operator parallelism.

Existing deep learning frameworks usually utilize
intra-operator parallelism to combine the arithmetic op-
erations (matrix multiplication) of a single neural net-
work operator with serial execution adopted by the un-
derlying acceleration unit, missing opportunities to fur-
ther improve performance. Ref. [13] used the cost
model-based neural network search method, which can
automatically find the high-performance tensor parame-
ters corresponding to the current operator for different
hardware devices to guide the reasoning execution of
the model. However, with the continuous improvement
of hardware computing power, only intra-operator par-
allelism cannot provide sufficient parallel scheduling
optimization solutions for hardware devices, so a series
of optimization algorithms can be used.

The existing methods of inter-operator parallelism
mainly use heuristic and neural network algorithms to
schedule the parallel execution of multiple operators on
the underlying hardware at the same time. Ref. [14]
proposed a greedy strategy to execute all available DNN
operators directly on hardware devices to maximize re-
source utilization. Ref. [15] proposed a nimble deep
learning (DL) execution engine, which can run graph-
ics processing unit (GPU) tasks in parallel with mini-
mal scheduling overhead. Ref. [16] only used a finite
convolution operator fusion strategy of the same type of
operator (Conv) for fusion. It does not take into ac-
count substitutions between operators of different types.
Ref. [17] explored the scheduling space through a no-
vel cross-operator dynamic programming algorithm. It
finds highly optimized schedules with low search costs,
which further optimizes schedule inference latency be-
tween operators. However, the algorithm is a one-time
exploration and optimization of the entire computational
graph of the neural network model, which results in a
geometrically exponential increase in scheduling time
when scheduling some large models.

Therefore, in this paper, under the condition of
equal model inference scheduling delay, a globally op-
timal inter-operator parallelism schedule ( IOPS) algo-
rithm with fast convergence speed is designed.
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2　 Methods

2. 1 　 Optimization process and schedule descrip-
tion

This paper proposes an inter-operator parallelism
schedule (IOPS) to address the above problems. The
optimization process of this schedule is shown in Fig. 1.
First, taking the initial computational graph as input, a
computation graph splitting algorithm based on the lar-
gest block is designed, which recursively divides the
original complex computational graph into smaller sub-
graphs. Second, according to the operator characteris-
tics of the neural network computation graph, the oper-
ator replacement and operator parallel strategies are
proposed. Third, in the scheduling process, select the
optimal scheduling method ( parallel or replacement)
as the intermediate results are saved. Finally, each
ProTimes of the scheduling algorithm is added to get
the scheduling latency and strategy of the whole set of
models.

Fig. 1　 Overall optimization process

As neural networks evolve, computation graphs
are used to represent the computations required for a
compiled deep learning model. The computational
graph is a directed acyclic graph, which is denoted as
G(V,E), where V represents the operator in the com-
putation graph, and E(a,b) is used to connect the op-
erators in the computation graph, representing the op-
erator dependency between a and b.

In this paper, a dynamic programming scheduling
based on dynamic sub-scheduling is used. To better
describe this problem, the operator dynamic partitio-
ning problem is formally defined in the following form.
S, S1 and S2 represent the set of operators. S = {b, c,
d, e, f, g}, S1 = {c, e, f, g}, S2 = {f, g}.

As shown in Fig. 2, S represents a set of operators
in the computational graph. S1 is the intermediate set
of S. Subsequent nodes to the set of S1 should not be in
S, and for all scheduling, a set of scheduling nodes

must exist in a subset of S1. Enumerate all non-empty
subsets of S1, if the S2 set is the optimal scheduling
set, it needs to find the optimal scheduling S-S2 = {b,
c, d, e} . Repeating the above steps in this way can
reduce the computational complexity, and finally ob-
tain the entire computational graph.

Fig. 2　 Description of the parallel scheduling process
inter-operator

For the scheduling delay evaluation of computa-
tional graphs, this paper uses an improved dynamic
programming algorithm to schedule subgraphs. Eq. (1)
is used as the state transition equation for dynamic pro-
gramming scheduling, where G′ represents the sub-
graph generated by the graph partitioning algorithm,
and the scheduling delay ProTimes(L′) is obtained
through IOPS sub scheduling. Therefore, the problem
turns into finding the scheduling delay that minimizes
the subproblem Cost(G′ - L′) .
CostModel(G′) = min(ProTimes(L′) + Cost(G′ - L′))

(1)
CostModel(G) = ∑ n

i = 1
(ProTimes[Si]) (2)

The total delay of the entire computational graph
scheduling can be obtained by adding the delay time of
each Pro, as shown in Eq. (2). The measured delay
is used as a cost model to guide the optimization of a
given process Pro(Si) and the corresponding alterna-
tive parallel strategies. The optimal scheduling of the
entire computational graph can be obtained. Assume
that the total delay of the final computation graph
scheduling is the sum of the delays of each Pro. That
is, the scheduling delay for the next Pro is not affected
by the previous Pro. Scheduling between Pros is inde-
pendent of each other. Eq. (2) will be experimentally
verified in subsection 3. 7.

2. 2　 Model splitting algorithm
Many state-of-the-art neural network models are

too large to optimize the entire computational graph
through search. This paper uses a block-based model
splitting algorithm to partition the computational graph
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into smaller disjoint subgraphs recursively. The maxi-
mum block is defined as the maximum number of paral-
lel operators that a thread can operate in parallel. In
this experiment, the maximum number of operators in
each block is 50. The split subgraph can be scheduled
using a parallel optimization strategy.

Because operator replacement cannot be per-
formed on any two sub-blocks, the goal of splitting is to
minimize the number of operator replacements that span
the two subgraphs. For each operator Si ∈ G define
cap(Si) as mapping to number of operator substitutions
for at least one input edge and one output edge of oper-
ator Si . Disable operator substitution if the graph is
split using operator split. The model splitting problem
is mapped to a minimum point cut problem by using
cap(Si) as the weight of each operator. Algorithm 1
shows a model splitting algorithm using the most exten-
sive block algorithm as an example. After running the
dynamic template scheduling algorithm to optimize in-
dividual subgraphs, IOPS re-stitches the optimized
subgraphs together to form a complete computational
graph. Finally, a local backtracking search is per-
formed around each split point to obtain operator sub-
stitutions across the split.

Algorithm 1 A blocks-based graph split algorithm
Input: Initialized computational graph
Output: Calculation graph after splitting
1: function ModelSplit(G)
2:　 　 if |G |≤ max part size then
3:　 　 　 return G
4:　 　 else
5:∥MIN-SPLLT(·) #Returns the operator replacement
6:　 　 　 P = MIN-SPLIT(G)
7:　 　 　 G1 = {Si ∈ G | Si can be accessed from P}
8:　 　 　 G2 = G - G1

9:　 　 　 return {ModelSplit (G1), ModelSplit (G2)}
10:　 　 end if
11: end function

Although the most block-based model splitting al-
gorithm is effective and achieves good performance for
all models used in the experiments, it is not a universal
model splitting algorithm for all models.

2. 3　 Operator replacement
In the operator replacement strategy, each re-

placement consists of a source operator and a target op-
erator. The source operator can be mapped to a sub-
operator in the model computational graph. The target
operator defines how to create a new sub-operator to re-
place it.

The source operator defines the structure of the re-
placement valid operator. The target operator describes
how to construct a new operator to replace the mapped
operator. For each newly created operator, the target
operator defines how to set parameters and calculate
weights using the parameters and weights from the
source operator. The outer edges of the destination op-
erator should correspond to every outer edge of the
source operator, and any outer operators initially con-
nected to the map operator in the source operator
should now be connected to the corresponding operator
in the destination operator.

Each node in a source operator is associated with
a type and can only be assigned to operators of the
same type. Source operators can also include generic
nodes, which are helpful when the operator type does
not affect the replacement process and when the source
operator describes multiple similar replacement scenari-
os. In addition to type constraints, source operators
can also contain other convolution size constraints on
one or more operators to restrict replacement further.

Fig. 3 shows the method of operator replacement.
The first step is to replace Conv2 and Conv3 operators
with Conv4 operators. The next step is to replace the
Conv6 and add operators with the Conv7 operator. Af-
ter the Conv4 operator, the replaced operator will be
split to maintain the dependencies between operators.

Fig. 3　 The method of operator replacement

2. 4　 Parallel scheduling
The parallel scheduling between operators based

on dynamic templates will automatically find an optimal
schedule for the current computational graph under the
given cost model, underlying hardware, and inference
parameters. Compared with the traditional dynamic
programming scheduling, this paper uses the back-
tracking technology of the dynamic template, which
greatly reduces the convergence time of finding the op-
timal scheduling.

Fig. 4 shows the changes in the execution order of
model scheduling before and after using operator re-
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placement and the IOPS scheduling algorithm. Take an
Inception module in the Inception-v3 model[18] as an
example. After using the model splitting algorithm
based on the largest block, the module to be scheduled
is obtained by taking the Inception module as a sub-
graph. As shown in Fig. 4(a), the nodes (a, b, h, i,
and g) indicate operators with a convolution size of 3 ×
3, and the nodes (c and f) represent a convolution op-
erator with convolution size of 3 × 1, the nodes (d and
g) represent convolution operators with a convolution
size of 1 × 3, and the nodes are model grouping opera-
tors. Due to the different processing methods of differ-
ent back-end IOPS algorithms, this paper selects the
GPU NVIDIA GeForce RTX 2080ti, the IOPS schedu-
ling algorithm adopts the sub-Pro scheduling method.
As shown in Fig. 4(b), the scheduling of nodes (e) is
divided into Pro1, which means that during this
process, nodes ( e) occupy a single GPU thread for
scheduling. In Pro4, expand the convolution operator
of the node(d) to 3 × 3 size, replace the original nodes
(c) and (d) nodes, get the replaced operator [c & d],
compare the parallelism and replacement latency, and

(a) Before scheduling optimization

(b) After IOPS optimization
Fig. 4　 Changes in the execution order of model scheduling

before and after using operator replacement

choose the best result. This minimizes scheduling de-
lays across the entire computation graph. The specific
IOPS scheduling Algorithm 2 is as follows.
Algorithm 2 Parallel scheduling
Input: Computation graph G
Output: G Schedule
1: initialization Times [S1] = ∞ , Policy[S1] = Ø# S1 is a

subset of the operator subset S
2: function IPS(S)
3:　 　 　 　 V = Computational graph of all operators
4:　 　 　 　 For All end operators set S1, Policy P do
5:　 　 　 　 LS1, PS1

= Pro (S1)
6:　 　 　 　 Si = SplitModel(S1), ( i = 1,2,…,i)
7:　 　 　 　 Template[Si] = Times(Si)
8:　 　 　 　 　 if group[S1] = = list[Si] then
9:　 　 　 　 　 　 return Template[Si]#assign
10:　 　 　 　 　 　 LSipar

= Times(Sipar)
11:　 　 　 if Si can trans? LSitrans

:LSitrans
= ∞

12:　 　 　 if LSitrans
≥ LSipar

? LSipar
: LSitrans

13:　 　 　 LS′ = IOPS (S - Si-1) + L(S)

14:　 　 　 if LS′ < Times[S] then #Update strategy
15:　 　 　 　 　 　 Times[S] = LS′

16:　 　 　 　 　 　 Policy[S] = (Si-1, Policy[Si-1])
17:　 　 　 end if
18:　 end for
19: return Times(S)
20:end function

In optimizing the scheduling search, use Template[]
to save the sub-scheduling in the current scheduling
process if the scheduling set of a group of sub-graphs
changes. When making policy selection, the current
optimal Policy will be selected according to the calcu-
lated Times value. First, whether the current operator
can perform operator replacement operations will be se-
lected according to the strategy defined in subsection
2. 3. If it is judged as no, LSitrans

is assigned as infinite,
which means irreplaceable. Otherwise, return the de-
lay of the current operator replacement to LSitrans

, in
lines 10 - 12, IOPS will return the optimal delay and
policy of the current operator set according to LSitrans

and
LSipar

. Line 13 is the CostModel defined in Eq. (2),
which performs dynamic programming to explore the
scheduling delay of the remaining operators, with the
aim of minimizing the scheduling delay of the schedu-
ling sub-problem (S - Si) . Lines 14 - 16 will automat-
ically update the current optimal scheduling time and
strategy according to the LS′ obtained from the defined
CostModel and finally return the optimal scheduling de-
lay and strategy.
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3　 Experimental results and analysis

In order to verify that IOPS is a general computa-
tional graph scheduling algorithm, five types of popular
neural network model architectures are used for experi-
ments. The specific parameter configurations are shown
in Table 1.

Table 1　 Structure parameters of neural network model
NetWorks Blocks Convs Ops Type

Inception-v3[18] 13 41 102 Conv
ResNet-50[19] 16 20 83 Conv
NasRNN[20] 1 ——— 30 RNN
NasNet[21] 1 264 1128 SepConv

RandWire[22] 456 112 456 SepConv
SqueezeNet[23] 12 30 50 Conv

BERT[24] 8 ——— 113 Attention

Experimental environment settings: Python 3. 7,
CUDA 11. 1, cuDNN version 8. 0. 5, ubuntu version
18. 04, CPU 6x Xeon E5 -2678 V3, GPU NVIDIA Ge-
Force RTX 2080ti, professional inference engine Ten-
sorRT version 7. 0. 0. 11.

3. 1　 Ablation experiment
This section conducts a series of ablation experi-

ments on each module of the algorithm for different net-
works. Different neural network models use three meth-
ods for scheduling. The scheduling latency results ob-
tained by each optimization method are shown in
Table 2. TS means the time delay obtained by the
scheduling algorithm when only replacement is per-
formed. PS means the scheduling delay obtained by
only performing operator parallelism.

Table 2　 Latency of different methods

Models
Latency / ms

TS PS TS + PS
NasRNN ——— 0. 71 0. 71
NasNet 20. 48 15. 25 14. 23

SqueezeNet 0. 89 0. 79 0. 64
Randwire 3. 91 3. 64 3. 53

Inception-v3 4. 6 4. 53 4. 03
BERT ——— 1. 38 1. 41

ResNet-50 2. 24 1. 93 1. 85

It can be seen from the results that the delay ob-
tained by using the PS method is generally smaller than
the scheduling delay obtained by TS, because TS only
replaces convolution operators that meet the constraints,

and its applicable range is limited. PS can satisfy the
parallel execution between different source operators
(such as Conv, Add and Relu). This method (TS +
PS) combines these two optimization methods. Selec-
ting the best scheduling scheme in the process of global
optimization can get the best overall scheduling delay.

3. 2　 End-to-end scheduling methods
This paper compared four different scheduling

methods: Sequential (SQ), Greedy (GE), TensorRT
(TR), and IOPS. Based on the above environment
settings. The maximum number of operators in each
experiment process is set to 4 and the maximum num-
ber of processes is 8, and the experimental data is re-
peated 10 times to take the mean value for statistics.
When the batch size is 1, SQ executes each operator in
turn according to the topological shape of the model
computation graph. GE is putting all the operators that
can be executed in the same process in parallel in the
current state. As a professional inference engine, TR
performs efficient inference scheduling according to its
internally defined execution order. The IOPS schedu-
ling in this paper is based on the defined operator re-
placement and dynamic template scheduling algo-
rithms, and the operators in the computation graph are
executed in parallel among the operators. All four
scheduling methods are executed on the same execution
engine. In this paper, 10 times of scheduling are used
to obtain the average value, and finally the standard
throughput of each model delay is shown in Fig. 5.

It can be seen from Fig. 5 that the inference delay
of the IOPS scheduling algorithm is generally lower
than that of the other three scheduling methods. For
the network structure with the Inception module and
ResNet residual block, because the operators of the
model design have a high degree of parallelism and the
network model belongs to a deep neural network, the
communication overhead between operators can be
greatly reduced through the parallel replacement strate-
gy and achieved a more obvious acceleration. For
RandWire and SqueezeNet, which are obtained by
neural network architecture search, in order to make
full use of hardware resources, a large number of par-
allel operators are usually generated, so the algorithm
in this paper can achieve friendly acceleration for this
model. For the bidirectional encoder representation
from transformers (BERT) series of network models,
due to the sequential nature of its structure and fewer
branches, the IOPS method only performs limited par-
allelism, and the actual acceleration effect is modest.
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Fig. 5　 Operator scheduling inference delay

3. 3　 Comparison of optimization time
For scheduling reasoning of neural networks,

model optimization convergence delay is also an impor-
tant part. Therefore, based on the test environment in
this paper, the optimized time of different networks un-
der the same underlying hardware environment is test-
ed.

The model optimization time is shown in Table 3.
Compared with the heuristic enumeration search, the
experiment setup of this article sets the maximum par-
allel operator quantity for (Pro) to be 4, and the max-
imum number of processes to be processed is 8, thus
reducing the search range. Compared with some mod-
els with simple structures in Ref. [17], the optimiza-
tion time of the Inception-v3 model is increased by

nearly 5 times, and the optimization time of the Res-
Net-50 and SqueezeNet models is increased by 2 times.
For the NasNet model, an order-of-magnitude improve-
ment has been achieved. Ref. [25] used the back-
tracking search algorithm based on the Cost Model. In
this paper, Q = 20 and φ = 1 are used to calculate the
convergence time of the model. For models with com-
plex structures such as the RandWire model, the num-
ber of replacement strategy operators in this paper is
reduced to 406. Therefore, the optimization time of the
algorithm has been greatly improved. In addition, due
to the time consumption of the selection strategy, the
convergence time of the algorithm in this paper is
slightly higher than that in Ref. [9] for the complex
model BERT.

Table 3　 Optimization time of different networks
Model Ref. [17] Heuristic Ref. [10] Ref. [25] Ref. [9] This work

NasRNN ——— ——— ——— >1 h 20. 59 s 49 s
NasNet 10 min > 1 h > 1 h > 1 h 233. 34 s 2 s

SqueezeNet 10 s > 1 h ——— ——— ——— 5 s
RandWire 20 min > 1 h > 1 h ——— ——— 7. 2 min

Inception-v3 10 s 12. 8 min 40 s 18. 75 s 4. 38 s 2 s
ResNet-50 5. 25 s > 1 h 60 s 8. 75 s 1. 14 s 2 s

BERT ——— >1 h ——— 20 s 11. 69 s 17 s

3. 4　 Different hardware backends
To verify the applicability of the algorithm in this

paper on different hardware backends, this section
conducts experiments on the parallel delay allocation of
the Inception-v3 network on three different underlying
hardware GPUs.

As shown in Table 4, TotTime represents the total
delay. For the Inception-v3 model, the model splitting
algorithms in this paper split it into 13 sub-blocks (la-
beled 0-12). For SQ scheduling, the scheduling re-
sources of the model are mainly used for the Inception
module, which is sub-block 11. For the IOPS inter-

operator scheduling algorithm, multiple operators’ par-
allel numbers and methods can be adjusted according

Table 4　 Different hardware backends
　 Method TotTime Blocks Block Time

Tesla
K80

SQ
IOPS

35. 31 ms
25. 00 ms

13
13

[11]
[0]

4. 51 ms
4. 34 ms

RTX
2080ti

SQ
IOPS

6. 47 ms
4. 03 ms

13
13

[11]
[9]

0. 84 ms
0. 51 ms

RTX
3090

SQ
IOPS

6. 04 ms
3. 33 ms

13
13

[11]
[8]

0. 88 ms
0. 44 ms
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to the maximum availability of resources during model
scheduling for different execution backends.

3. 5　 Scheduling delay of different batch sizes
The batch sizes of the network will affect the

scheduling delay of the model. The average delay of 10
experiments was selected for the experiment. As shown
in Fig. 6, the IOPS method is much lower than the oth-
er two scheduling methods under different batch sizes.
GE exhibits better scheduling delay than SQ in most
cases. When the batch size is 8, the GE delay ob-
tained by the experiment is the largest. By analyzing
the scheduling delay of each Inception block in Incep-
tion-v3, when the batch size is 8, the GE has resource
contention in the early stage of Pro, so the underuti-
lized situation can lead to a GE delay higher than SQ
scheduling. The IOPS method proposed in this paper is
usually lower than the other two scheduling methods.

Fig. 6　 Different batch sizes

The algorithm in this paper allocates different parallel
branch sizes adaptively for different batch sizes, so it is
also applicable for different batch sizes.

3. 6　 Other performance index parameters
By comparing different metrics of SQ and IPS, the

IPS method reduces delay and improves device utiliza-
tion. The method of utilization rate is shown in Eq. (3):

Um = GFLOPs
Latency (GFLOPs / ms) (3)

Table 5 presents several performance metrics. For
Inception-v3 and ResNet-50 networks, the number of
operators in the model is reduced after the operator re-
placement strategy is adopted, so the memory occupied
and the number of kernel launches are reduced. For
the memory and kernels occupied by the model, the
operator replacement strategy in this paper reduces the
number of operators in the model as a whole, and the
final memory usage is also reduced. In the model
scheduling process, the number of operators is reduced
by using operator replacement operations, which means
that the number of operators sent to the CUDA stream
is reduced. For a fixed model, the calculations for the
same model are a fixed value. Therefore, compared
with SQ scheduling, the giga floating-point operations
per second (GFLOPs) of each model do not vary, the
utilization rate of the hardware Um is calculated. There-
fore, the algorithm in this paper has strong applicabili-
ty to deep neural networks with convolution operations.

Table 5　 Comparison of performance parameters between SQ and IOPS

Models
GFLOPs

SQ IOPS
Memory / MB
SQ IOPS▽

Kernels
SQ IOPS▽

Latency / ms
SQ IOPS▽

Um

SQ IOPS△
NasRNN 2. 27 2. 27 0. 72 0. 64 5 5 0. 83 0. 71 2. 73 3. 19
NasNet 23. 12 23. 12 296. 8 296. 8 972 965 20. 60 14. 23 1. 12 1. 62

SqueezeNet 1. 22 1. 22 14. 24 13. 15 50 46 1. 01 0. 64 1. 21 1. 90
RandWire 8. 06 8. 06 106. 0 105. 9 410 406 3. 92 3. 53 2. 05 2. 28

Inception-v3 5. 78 5. 78 20. 6 18. 03 119 106 6. 47 4. 03 0. 89 1. 27
ResNet-50 2. 51 2. 51 9. 50 8. 97 86 82 2. 58 1. 85 0. 97 1. 36

3. 7　 ResNet-50 delay per block
Assume that the delay of the entire computational

graph is equal to the sum of the delay of each Pro. To
verify the hypothesis of Eq. (2) random sampling is
performed on each process of the computational graph,
and then the sampled results are summed to evaluate
the actual delay of the entire computational graph. The
predicted delay is obtained by adding the scheduling
delays of all processes. The results of the actual and
predicted delays are shown in Fig. 7. By calculation,
the sum of the difference between the predicted value Fig. 7　 The results of the actual and predicted latency
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and the actual value of the 10 times of data is 0. 022,
and the final average precision error is 0. 002.

4　 Conclusion

The algorithm designed in this paper is a general
neural network scheduling algorithm. Firstly, a graph
partition algorithm based on the largest block is de-
signed to divide the neural network model into multiple
subgraphs. Then, operators that meet the conditions
are replaced according to the defined operator replace-
ment rules. Finally, the optimal scheduling method
based on backtracking is used to schedule the computa-
tion graph. Through analysis of scheduling delay and
convergence time in the experimental part, it can be
concluded that the proposed algorithm can achieve 1. 6 ×
acceleration for deep neural networks such as NasNet
and SqueezeNet compared with SQ scheduling. For
RandWire model, compared with SQ scheduling, only
PS strategy can achieve 1. 1 × acceleration. In this ex-
periment, most models can be optimized within
10 min. Therefore, the algorithm proposed in this pa-
per can be widely used in the research of parallel ar-
chitecture of neural network models. In the future, it is
considered to optimize the algorithm replacement rules
and perform deeper optimization on the model calcula-
tion graph level.
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