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Abstract

Hyperparameter optimization is considered as one of the most challenges in deep learning and
dominates the precision of model in a certain. Recent proposals tried to solve this issue through the
particle swarm optimization (PSO), but its native defect may result in the local optima trapped and
convergence difficulty. In this paper, the genetic operations are introduced to the PSO, which makes
the best hyperparameter combination scheme for specific network architecture be located easier. Spe-
cifically, to prevent the troubles caused by the different data types and value scopes, a mixed coding
method is used to ensure the effectiveness of particles. Moreover, the crossover and mutation opera-
tions are added to the process of particles updating, to increase the diversity of particles and avoid
local optima in searching. Verified with three benchmark datasets, MNIST, Fashion-MNIST, and
CIFAR10, it is demonstrated that the proposed scheme can achieve accuracies of 99.58% ,
93.39% , and 78.96% , respectively, improving the accuracy by about 0.1% , 0.5% , and 2% ,

respectively, compared with that of the PSO.
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0 Introduction

With the rapid growth of the artificial intelligence
(AI) technologies, deep learning has achieved signifi-
cant results in complex regression and classification
problems, involving computer vision ( CV ), natural

S and

language processing ( NLP) , object detection
so on. a neural network model needs to be trained to
drive a satisfied accuracy. But there are a large num-
ber of hyperparameters which need to be configured
during the training processing, such as learning rate,
batch size, and optimizer. How to select appropriate
hyperparameters to help training and explore the best
neural network model has become a focus and a diffi-
culty.

In the early studies, grid search was used to ex-
haustive search of parameter space. Later, an im-
proved algorithm was implemented based on this called
random search. Experiments have shown that, with the
same number of search iterations, random search tries
more parameter values compared with grid search, and

reduces search time while ensuring model accuracy'>.
However, these search methods cannot solve the pa-
rameter optimization problem of neural network very
well. Ref. [3] mentioned that hyperparameter optimi-
zation is an NP-hard optimization problem, and most
current approaches solve it by adopting metaheuristic
algorithms.

Ref. [ 4] successfully used genetic algorithm
(GA) for hyperparameter tuning. It is found that more
and more metaheuristic and modified algorithms could
be used to optimize neural networks, and some re-
searchers choose to extend different exploration*’. The
development of hybrid models can improve performance
and the ability of complex optimization. Ref. [5] pro-
posed an improved hybrid algorithm based on bat echo
location behavior, combining local search to optimize
weights, architectures, and active neurons. Ref. [6]
introduced a combination of genetic and gradient de-
scent to train networks. The proposed HGADD-NN
method achieved good results on several benchmark
problems.

Among most common algorithms, the particle
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78] .
is a more popular

swarm optimization ( PSO)!
choice, compared with GA'' | grey wolf optimization
algorithm ( AWO )" and ant colony optimization
(ACO), because of its less nodal parameters, efficient
global search and easily concurrent processing. So, it
is introduced into parameters selection of convolutional
neural network (CNN). In Ref. [7], PSO is used for
parameters decision of CNN and verified successfully in
classification of CIFAR. This indicates that PSO is a
feasible scheme for parameters optimization of CNN.
To handle the different of value scopes and datatypes of
hyperparameters, independent candidate particles were
defined for different parameter in Ref. [7]. But the
initial position selected randomly would result in local
optima trapped and the weakly local searching ability
would entail a long convergent stage. Such a weakness
may lead to a biased model even with the cost of ad-
ditional calculations. Therefore, the improved PSO or
integrating other heuristic algorithms become a striking
field. Ref. [11] proposed a distributed PSO ( DPSO)
mechanism. The particles were updated and allocated in
the master, and the fitness of different particles was cal-
culated using multiple slaves. This strategy automatical-
ly and globally searches for optimal hyperparameters and
dramatically reduces training time compared with tradi-
tional PSO, thanks to the distributed training method.
Unfortunately, this idea only uses a distribution way to
tackle long training time in the parameter configuration
process. The cost of calculation is ignored.

The key problem to this issue lies in balance of
the diversity of particle swarms and cost of conver-
gence. In this work, an improved solution of PSO is
proposed to aid in locating the best hyperparameter
combination of specific network architecture easier.
The following specific contributions are made.

(1) To response to the troubles caused by incon-
sistent data types and widely different value scopes of
neural networks, the interval mapping method is
adopted to data coding. The motivation of such design
is to ensure the effectiveness of particles through a nor-
malized strategy and to avoid the local evolution of
swarm stem from randomly position selecting of original
particles.

(2) By introducing mutation and crossover opera-
tions to increase the diversity of particles, the proposed
algorithm solves the problems of the raw PSO, such as
being easily trapped in local optima and low conver-
gence accuracy during hyperparameter searching.

The rest of this paper is organized as follows. Sec-
tion 1 discusses related work. Section 2 analyzes the
motivation and describes the implementation of pro-
posed algorithms in detail. Section 3 discusses the ex-

perimental environment and implementation scheme on
different network structures and datasets. Section 4
summarizes the content of this paper.

1 Related work

In PSO'"™' | the optima seeking is converted to a
process of traversing a n-dimensional function with par-
ticles of a swarm. Each a potential solution to a given
problem is viewed as a particle. PSO obtains the best
solution from interaction of particles. When mapping
the different value scope of hyperparameters into a n-
dimensional function, selecting of the best parameter
combination can be figured out by PSO.

If there are N hyperparameters in the specific
CNN, the value of each parameter ranges from low to
up . A particle can be denoted as
L TR N g and the performance is evalua-
ted by a fitness function (often the loss function in
CNN). The swarm is constructed originally with parti-
cles generated randomly by predefined value. The fit-
ness value of each particle is calculated iteratively until
reaching its best position or meeting the pre-set termi-
nation condition. The prior personal best position ( g
1) and the global best position ( p ,.,) is character-

ized as the intermediate results. Updating of particles

can be given by Eq. (1) and Eq. (2).

Vig = woy e 1 py—x )t (g =)
(1)
Xig = Xig + 0y (2)

where , v represents the velocity vector; w is the inertia
weight utilized to balance the local exploitation and
global exploration; r, and r, are random vectors uni-
formly distributed within the range of [low,upl ; ¢,
and ¢, are acceleration coefficients, which are positive
constants.

Above scheme, mentioned in Ref. [7] had been
demonstrated be helpful to parameters tuning. Howev-
er, there are many kinds of hyperparameter included in
CNN, their datatype is also inconsistent ( the number
of convolutional kernels is recorded as integer, the
learning rate is float, etc. ). Moreover, the value
scope of parameters in different layers show an enor-
mous difference. The uniform format in coding will
merge the effective attribute of particles and results a
calculation error. However, differentiated coding for-
mat will increase the complexity of the swarm. Addi-
tional, when solving the problem with a large number
of dimensions or complex and large datasets, PSO
shows poor-quality results, usually falling into local op-
tima trap.
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To cope with this tricky situation, a series of solu-
tions are proposed in this paper. The composite variable-
type particles are mapped into an interval to ensure the
effectiveness of particles update and to prevent the poor
results due to significant differences in data sampling in-
tervals. Then, the selection, mutation, and crossover op-
erations of GA are introduced to add diversity of particles
and avoid getting stuck in local optima during the param-
eter search process. Finally, an improved particle swarm
optimization (IPSO) algorithm is proposed based on the
above two improvement measures.

2 Methods

2.1 Hybrid particle coding

The parameters of CNN to be optimized selected
in this paper include the number of convolution ker-
nels, learning rate and batch size, etc. , as shown in

Table 1.

Table 1 Parameters to be optimized

Variable Scope Parameter

Parml (1.6] The size of the first layer convolu-
tion kernel

Parm? [1.16] The s'lze of the second layer con-
volution kernel

Parm3 [1.84] The nl.lmber 'of fully connected
layers in the first layer

Parmd [1.120] The nl.lmber of fully connected
layers in the second layer

Parm5 [4,256] Batch Size

Parm6  [0.0001,0.1] Learning rate

It can be seen from Table 1 that the scope of pa-
rameters of int-type ranges from 6 x( Parml) to 120 x
( Parm4 ). In addition,
(Parm6) is also involved. Such a variety of value may-

a float-type parameter
be leads to bias direction in updating procedure and
unable to converge in severe cases. As a result, there
needs an effective manner to remove this difference. To
this end, the PSO advocate'”® can only independently
characterizes particles for each parameter. As a result,
initial value of each particle only occurs randomly in
self-defined scope. Although the difference of parame-
ter scope needs not to be considered, such a treatment
may probably generate an unreachable position during
searching. For example, in a two-dimensional space
composed of Parm2 and Parm3, the value of Parm2
could not reach [1,3] and [8,11], marked as ‘=
in Fig. 1, due to the limiting of random function. Sub-
sequently, particles generated will not overall coverage

to initial swarm, while it would trap in local optima in
iteration.

To avoid such incidents, a random sampling func-
tion conformed to uniform distribution is introduced in
our scheme, which uniforms the coding of overall pa-
rameters. Meanwhile, Eq. (3) is used to mapping
scopes of parameters to a normalized uniform.

value = lowArea + CupArea — lowArea) X value

(3)
where the lower bound and upper bound of a parameter
are denoted as lowArea and upArea respectively. The
distribution of initial particles is presented as ‘=’ in
Fig. 1. It is obvious that particles scattered steadily in
overall interval. The global coverage of search space
and completeness of swarm are guaranteed very well.
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e Particle distribution of this article

Fig.1 Schematic diagram of particle distribution before

and after optimization

2.2 Genetic manipulation

In this paper, in order to increase the diversity of
particles during the updating, the selection, crossover,
and mutation operations of GA are added to the IPSO.
The cross process of particles is shown in Fig. 2. Sup-
pose there are N particles in the swarm, which are de-
noted as { X, X, ,X,,--+,X, ,,X,} . After the calcula-
tion, the fitness values of each particle are marked as
F(X),F(X,),F(X), - F(X, ), F(X,)).
Firstly, the first two particles with higher fitness values
are selected and recorded as X; and X, . The inter-sec-
tion point P is calculated using Eq. (4). Taking N =
6 as an example, the selection result is shown in Fig. 2
(a). Then, using the inter-section point P as the
boundary, the particles X; and X; are divided into four
parts: X, o s Xiuier » Xj—front , and Xjfafler s
in Fig. 2(b). Finally, X is spliced with X;
and X,

Jj—front

cles X.

i—new

(c).

as shown

i—front —after 9

is spliced with X
and X;

then two new parti-

i—after 9

are formed, as shown in Fig. 2

—new

p =[N/ 2] (4)

The schematic diagram of the particle mutation is
presented in Fig.3, taking N =6 as an example. Firstly,
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Fig.2 An example illustration of the crossover process

the complete information of the initial particle would be
obtained. Then, N will be

randomly generated, N denotes the total number of op-

an integer value in [ 1,
timized parameters. Finally, a randomly generated
number within the corresponding parameter scope of
that position will replace the original value, and the

mutation operation will be done.

¥ Random position
[6 [16]84]96]640.001]
Mutate

[6 [16]84 120 64]0.001]

Fig.3 Schematic diagram of mutation process

For the raw PSO method, particle position partici-
pating in the next iteration is determined by the optimal
solution obtained from this searching round and the his-
torical optimal solution. The update domain of raw PSO
can be described by the zone, shown as dashed lines in
Fig. 4. The updating domain of raw PSO is limited to such
a domain. It is only stopped in the optima of such local
domain. If the global optima are escaped out of this inter-
val, the final result will be deviated to the correct one.

The GA operations will help to jump out of this
limitation by involving new particle. It can enhance the
diversity of particles in iteration of swarm, and make
the global optima be located easier.

¢Optimal position

Genetic ( !‘
Qﬁ’u‘?@ mamgulatlon.v

Obtain Global
O ptimization after
optimization

On gmal Lo
Optimal

@Particle position in search space
@PSO update particle position
Update particle positions after optimization
Fig. 4 Comparison of particle positions before and after

optimization

2.3 Overall scheme

The flow chart of hyperparameter configuration
based on the proposed IPSO is shown in Fig. 5, there
are 3 steps as follows.

Step 1

Initialization of swarm and its particles.

The learning factors ¢, , ¢, , weight coefficient w ,
number of particles, and maximum particle speed need
to be initialized at beginning. At the same time, it
opens up a space to store local and global optimal val-
ues and randomly generates a specified number N of
particles to form a swarm according to the number and
scope of parameters to be optimized.

Step 2

cles. The values of each particle are sequentially sent

Calculate the fitness value of the parti-

to the designated neural network for training and tes-
ting, and the accuracy rate obtained will be selected as
the fitness value of the particle and recorded.

Step 3
Algorithm 1,
dated to complete the subsequent iteration.

Particles updating. According to

the particles in the current swarm are up-

Algorithm 1  Particle updating

Input: Primitive swarm D(X ), Fitness function F( X)
Output: The updated swarm D(X)

1; function update (D(X))

2 ; Initialization max, and max,

3 for; i in length ( D(X) )

4. Evaluate F(X,)

5: set max, and max,

6. end for

7. update g, and p,

8. new, , new, = crossover ( max, , max, )
9. D(X) = mutate ( new, , new, )

10 return D( X)

11 end function

Initialize N particles
randomly to generate
a swarm

Calculate the fitness
value of this particle

Update current optima
value and global
optima value

Select particles to
complete crossing and
mutation

Update particle speed
and position

Reaching the spemﬁe
number of iterations?

Yes

Output final
results

Fig.5 Flow chart of the IPSO
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3 Experiments and results analysis

3.1 Implementation details

The initialization of the algorithm is completed ac-
cording to the parameters shown in Table 2. The pro-
posed algorithm is verified under different network
structures and data sets. The experimental environment
of this paper is shown in Table 3.

Table 2 IPSO algorithm related parameters

Name Value Meaning
. The number of particles

particleNum 20 . P .
in the population
epochMax 40 Maximum. num.ber
of search iterations

c, C 2 learning factor

w 0.5 inertia factor

np. random.

uniform (0.1) random number

Ty, Iy

Table 3  Experimental environment setting

Parameter Parameter details
System Ubuntu 18. 04
Processor NVIDIA GeForce RTX 3090
Memory 64 GB
Data storage 2 TB SSD

3.2 Experimental results and analysis
3.2.1 Under different network structures

In this work, LeNet-5, ResNet-18, VGG-16, Mo-
bileViT, and Long short-term memory (LSTM) are se-
lected as the test objects. The MNIST was used on
LeNet-5 and LSTM, the Flowers-Recognition was used
on MobileViT, and the remaining networks tested with
the CIFAR10. This presearch uses the parameters
searched by the IPSO and PSO to complete the training
task. The accuracy rate changes with epoch during the
training are shown in Fig. 6. It can be seen that for the
same training epoch, no matter which neural network is
used, the parameter configuration searched by the IP-
SO can make the neural network converge faster than
the PSO. In addition, Fig. 6 (c¢) and Fig. 6(d) show

more apparent difference in accuracy.
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S
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Fig. 6 Accuracy rate change with Epoch
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Using the TIPSO and the parameters searched by
the PSO to complete the training, the final accuracy
rate is compared in Table 4. It is clear that, after
structure tuned by TIPSO, the CNN model can finally
obtain higher accuracy, compared with tuned by PSO,
among which the accuracy rates are increased by about
0.4% ,1.9% , and 4. 5% , respectively. On the ViT
model, the network built by the IPSO can finally com-
plete the image classification tasks with an accuracy
rate of 66.21% , about 13% higher than that by the
raw PSO. IPSO and PSO have achieved similar accura-
cy on the recurrent neural network. On the ViT model
experiment, IPSO and PSO only have a difference of 1

in parameter 1, but the final network structure gains a
significant difference due to the layer-by-layer accumu-
lation. Meanwhile, although the data number of Flow-
ers-Recognition used in this paper is small, different
parameter configurations will still bring obvious differ-
ence of performance. LSTM is more inclined to the ap-
plication of NLP. At the same time, this paper only
considers two network-related parameters, the hidden
state and the number of recurrent network layers. Al-
though the difference between them will still change the
number of parameters, the extraction effect of changing
data feature is not obvious, which can be to negligible.

Table 4  Comparison of the accuracy of different algorithms on different network structures

Model LeNet-5 ResNet-18 VGG-16 Mobile-ViT LSTM
PSO 98.52% 77.02% 80. 67% 53.63% 99. 48%
IPSO( this paper) 98. 98% 78.96% 85.13% 66.21% 99. 58%

3.2.2 Under different datasets

To get the effectiveness of the IPSO proposed in
this paper on the hyperparameter seeking, three data-
sets of MNIST, Fashion-MNIST and CIFARI10 are se-
lected for verification.

(1) The MNIST dataset includes 70 000 hand-
written digital images. The training set contains 60 000
samples, while the test set contains 10 000 samples.
The dataset is categorized into 10 classes related to 10
numerals.

(2) The Fashion-MNIST dataset contains 10 cate-
gories of images; T-shirt, trouser, puller, dress, coat,
sandy, shirt, sneaker, bag, and ankle boot. The
training dataset has a total of 60 000 samples, and the
test dataset has a total of 10 000 samples.

(3) The CIFAR-10 dataset includes 60 000
color images from 10 categories, with 6000 images
per category. These 10 different categories represent
aircraft, cars, birds, cats, deer, dogs, frogs, hor-
ses, boats, and trucks. The training set contains
50 000 samples (83% of the original dataset) ,
while the test set contains 10 000 samples (17% of
the original dataset) .

The parameters searched by the TIPSO on the
above three data sets can have 99.58% , 93.39% ,
and 78.96% accuracy when training the neural net-
work. Compared with PSO, the accuracy has increased
by about 0. 1% , 0.5% , 2% , respectively. Compared
with the SSO'" | the same accuracy has been achieved
on the MNIST dataset meanwhile. On Fashion-MNIST
and CIFAR10, the accuracy has increased by 0.36%

and 5.83% respectively. Compared with the DP-

SO the model accuracy obtained using IPSO on
MNIST and Fashion MNIST is slightly higher, and the
final results are shown in Table 5. In addition, in or-
der to compare with the WOA'""’

mization parameters are adjusted to be consistent with

, the network’ s opti-

those in GWO, including batch size, epochs, and opti-
mizer. The results are shown in Table 6. From the ta-
ble, it can be seen that the IPSO algorithm’ s search
for parameter combinations completed training on the
Fashion-MNIST dataset has a higher accuracy on the
test set than GWO algorithm.

Table 5 Comparison of the accuracy of different algorithms on
different network structures
MNIST  Fashion-MNIST CIFAR10
pso 99. 48% 91.92% 77.02%
Ssot! 99. 58% 92.75% 73.13%
DPSO!M 99. 20% 92.34% -
IPSO( this paper)  99.58% 93.39% 78.96%

Table 6  Accuracy comparison on the Fashion-MNIST dataset
Batch
d,tc Epoch  Optimizer Accuracy
Size
Random
[10] 128 40 Adamax 89.41%
Search' ™
Grid
[10] 16 45 Adamax 89. 88%
Search' ™
GWO'" 512 30 Adamax  89.75%
IPSOCthis 5 40 Adam  90.28%
paper)
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4 Conclusion

This paper proposes an IPSO algorithm that in-
tegrates GA to address the issues of traditional PSO,
such as easily falling into local optima and low conver-
gence accuracy in the process of seeking. Finally, the
performance is verified by using different types of neu-
ral network models and datasets. Experimental results
show that the proposed IPSO achieves higher accuracy
than traditional PSO on CNNs and ViT models, tested
with Fashion-MNIST and CIFARI10 datasets. Moreo-
ver, with optimized parameter configurations, the mod-
el is more stable and converges faster during training.
However, this paper only considers a limited number of
parameters to be optimized, while other parameters af-
fecting the neural network structure, such as the depth
and number of convolutional layers, can also be
searched for the optimal solution. Therefore, in the fu-
ture, it is worth considering the fusion of parameters at
different levels to find the optimal network structure
and model parameters for better model performance.
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