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Abstract
Considering the nonlinear structure and spatial-temporal correlation of traffic network, and the

influence of potential correlation between nodes of traffic network on the spatial features, this paper
proposes a traffic speed prediction model based on the combination of graph attention network with
self-adaptive adjacency matrix (SAdpGAT) and bidirectional gated recurrent unit (BiGRU). First-
ly, the model introduces graph attention network (GAT) to extract the spatial features of real road
network and potential road network respectively in spatial dimension. Secondly, the spatial features
are input into BiGRU to extract the time series features. Finally, the prediction results of the real
road network and the potential road network are connected to generate the final prediction results of
the model. The experimental results show that the prediction accuracy of the proposed model is im-
proved obviously on METR-LA and PEMS-BAY datasets, which proves the advantages of the pro-
posed spatial-temporal model in traffic speed prediction.

Key words: traffic speed prediction, spatial-temporal correlation, self-adaptive adjacency ma-
trix, graph attention network (GAT), bidirectional gated recurrent unit (BiGRU)

0　 Introduction

Intelligent transportation systems ( ITS) play an
important role in building smart city[1] . Traffic predic-
tion provides favorable technical support for ITS, and
its main method is to forecast the future traffic situation
by combining the historical data collected by traffic
sensors and the real road network structure.

In the early stage, traditional linear time series
models, such as auto-regressive integrated moving av-
erage model (ARIMA) and its variants[2􀆼3], Kalman
filter[4], and other statistical methods were widely
used. However, these models assume that the condi-
tional variance of the time series is stationary, which
does not satisfy the actual traffic network condition.
Later, machine learning ( ML) methods were intro-
duced in the field of traffic prediction, such as Bayes-
ian estimation model[5], K-nearest neighbor algo-
rithm[6] . However, the prediction accuracy of these
methods is not high, and the model performance is not
good.

Deep learning (DL) technology is widely used in
traffic forecasting by many scholars. For example,

models based on convolution neural networks (CNNs)
and recurrent neural networks (RNNs) are helpful to
extract spatial-temporal dependent features[7-9] . How-
ever, when the traffic network is regarded as Euclidean
space, its topological structure may be lost, which
shows the limitations of CNN in extracting the spatial
features of the traffic network.

In recent years, graph neural network (GNN) has
become a cutting-edge technology in deep learning re-
search. The network based on graph convolutional net-
work (GCN) and graph attention network(GAT) are
used to process non-Euclidean spatial graph data and
improve the ability of the model to extract the spatial
features of the traffic network. Ref. [10] proposed a
combined model of GCN and gated recurrent unit
(GRU) in the early stage, which extracted the spatial
topological structure features and time series features of
the traffic network respectively. Ref. [11] innovative-
ly proposed a spatial-temporal graph convolutional net-
work based on attention mechanism to capture spatial-
temporal dynamic correlation features. Ref. [12] pro-
posed an adaptive graph learning algorithm based on
graph convolutional networks to capture the dependen-
cies between nodes. Ref. [13] proposed a component
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of adaptive learning graph structure using spatial-tem-
poral convolution network, which learns the optimal
graph structure from macro and micro perspectives re-
spectively. Among them, the short-term spatial-tempo-
ral dependence is learned from micro perspective, and
the long-term spatial-temporal dependence is learned
from macro perspective. Ref. [14] adopted the meth-
od of node embedding and utilized the GAT to generate
spatial adjacent subgraphs adaptively at different time
steps to improve the ability of capturing spatial fea-
tures. Ref. [15] designed a trend graph attention net-
work, which does not depend on the predefined graph
structure at all, focusing on learning potential spatial
and temporal dependency features to improve the gen-
eralization ability of the model. However, traffic condi-
tions change dynamically, and the correlation between
nodes is not only affected by the real distance between
static network nodes, but also by the dynamic change
of traffic flow. Therefore, considering only the static
topology of the traffic network may lose some potential
relationships between nodes, which is not conducive to
capturing the spatial correlation between potential net-
work nodes.

In view of the above problems, this paper propo-
ses a traffic speed prediction model based on the com-
bination of graph attention network with self-adaptive
adjacency matrix ( SAdpGAT) and bidirectional gated
recurrent unit (BiGRU).

The main contributions are as follows.
( 1 ) Constructing an adjacency matrix which

adaptively learns the correlation degree between net-
work nodes according to the traffic speed time series
features, thus improving the ability of capturing the
spatial information of potential road network and impro-
ving the generalization of the model.

(2) Combining GAT and BiGRU model to form
spatial-temporal blocks, the residual connection of
multiple spatial-temporal blocks can preserve more im-
portant spatial-temporal features information. Mean-
while, it can effectively alleviate the gradient disap-
pearance problem caused by model training, speed up
model training and improve the accuracy of model pre-
diction.

(3) The results of multi-step prediction are ana-
lyzed and compared with the benchmark model of the
same data sets. The performance of the proposed model
is better than other models, which provides theoretical
support for the field of traffic prediction.

1　 Prepared work

In this section, the traffic network is defined, and

then the specific problems of traffic speed prediction
are clarified.

1. 1　 Definition of traffic network
The traffic network is defined as a directed graph

G = V,E,A( ) , where V represents the set of network
nodes, E represents the edges between nodes, and A
∈ RN×N represents the weighted adjacency matrix. At
time step t, the traffic speed observed by node N (sen-
sor) is feature F, represented by Xt ∈RN×F . The same
node and its domain node show different correlations at
different time steps t, which shows the spatial-temporal
correlation of traffic prediction, as shown in Fig. 1.

Fig. 1　 Node correlation at different time steps t

1. 2　 Definition of problem
In the problem of traffic speed time series predic-

tion, the h historical steps time series Ht =
Xt -h+1,Xt -h+2,……,Xt

{ } is given to predict the p steps
time series P t = Xt +1, Xt +2,……, Xt +p

{ } in the fu-
ture. Each time step t will produce an adjacency matrix
with dynamic changes in node correlation. According
to the data of the past 1 h, this paper predicts the traf-
fic speed in the next 15 min, 30 min and 60 min.

2　 Methods

In this paper, a combined model SAdpGAT-BiG-
RU is designed to extract spatial-temporal dependency
features. As shown in Fig. 2, the proposed model is
composed of the spatial and temporal module, and the
residual mechanism is used to design multi-layer spa-
tial-temporal block stacking. In the spatial module,
GAT is used to capture the spatial dependence features
of the real road network, and SAdpGAT is used to cap-
ture the spatial dependence features of potential road
network. Temporal dependence features can be cap-
tured by inputting the spatial dependent features into
BiGRU. Then, the output features of the spatial-tem-
poral blocks are fully connected, and the prediction re-
sults of the real road network and the potential road
network are connected to get the final prediction results
of the model.
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Fig. 2　 SAdpGAT-BiGRU model structure

2. 1 　 Spatial feature extraction based on adaptive
graph attention

　 　 As shown in Fig. 2, the left half of this model ex-
tracts the spatial features of the real road network, and
uses Gaussian kernel function to calculate the correla-
tion between road network nodes to obtain the correla-
tion adjacency matrix. The right half of the model ex-
tracts the spatial features of the potential road network,
and constructs an adaptive correlation adjacency matrix
based on the topological structure of the real road net-
work, which assigns the same initial correlation degree
to all nodes, that is, A′[ i][ j] = C, 0≤i, j≤N - 1,
where A′ represents the newly constructed adaptive
correlation adjacency matrix, i and j represent the row
and column indexes of the matrix, C is a constant be-
tween (0,1). Then, the initial time series is used as a
condition, which is linearly transformed with the adja-
cency matrix of real road network and the adaptive cor-
relation adjacency matrix of potential road network,

and then input into GAT network. Finally, the atten-
tion score function is used to calculate the correlation
coefficient between nodes.

GAT[16] is a network based on an attention mecha-
nism proposed in the field of graph neural networks,
which does not depend on the overall structure of the
graph and only focuses on the correlation between
nodes. Therefore, the spatial dependent features can
be better extracted and the generalization performance
of the model can be improved. The implementation of
GAT is as follows: node features of road network adja-

cency matrix are used as input, h = {h
→

1,h
→

2,……,

h
→

N} , h
→

i ∈ RF , where N represents the number of
nodes, F represents the feature of each node, and the
node features output by the model is h′ =

h
→

􀆳
1,h

→
􀆳
2,……,h

→
􀆳
N

{ } , h
→

􀆳
i ∈ RF ′ .

As shown in Fig. 3, the self-attention mechanism
is used to calculate the attention coefficient eij from
node i to node j, as shown in Eq. (1).
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eij = LeakyReLU a
→

T X h
→

i‖X h
→

j
[ ]( ) (1)

where a
→

∈ R2F 􀆳 represents a learnable weight parame-
ter, ‖ represents a connection operation, and X ∈
RF′×F represents a shared weight matrix, that is, traffic
speed time series feature. The linear transformation is
normalized by using the LeakyReLU activation func-
tion, which solves the problem that the gradient of the
ReLU function disappears when the independent varia-
bles are negative.

Fig. 3 　 The GAT network calculates correlations between
nodes in the road network

The attention coefficient between nodes is calcu-
lated using softmax function, as shown in Eq. (2).

αij = softmaxj eij( ) =
exp eij( )

∑ k∈Ni
exp eik( )

(2)

where, Ni represents the domain node set of node i.
According to the normalized attention coefficient,

the node features are calculated as shown in Eq. (3).

h
→

􀆳
i = σ ∑

j∈Ni

αijXh
→

j( ) (3)

where, σ represents the nonlinear activation function,

X represents the shared weight matrix, and h
→

􀆳
i , h

→

j re-
present the new features of nodes.

In order to better capture the spatial correlation
between nodes, the multi-head attention mechanism is
used to calculate the nodes features, and K represents
the number of attention heads. In this model, the fea-
tures are connected at the first n - 1 layer, and the cal-
culation is shown in Eq. (4). In the n layer, the fea-
tures are averaged, and the calculation is shown in
Eq. (5).

h
→

􀆳
i =

K
‖

k = 1
σ ∑

j∈Ni

αk
ij Xk h

→

j( ) (4)

h
→

􀆳
i = σ 1

K ∑
K

k = 1
∑
j∈Ni

αk
ij Xk h

→

j( ) (5)

where ‖ represents a connection operation.

2. 2　 Temporal feature extraction based on BiGRU
GRU[17] is a simplified variant of long short􀆼term

memory ( LSTM) [18], which can achieve almost the
same effect as LSTM. Moreover, it can improve the
training efficiency of the model to a great extent and
solve the problem of gradient vanishing and gradient
explosion. In the GRU network, the reset gate is help-
ful to capture short-term dependent features. The up-
date gate is helpful to capture long-term dependent fea-
tures.

BiGRU is composed of a forward hidden layer and
a backward hidden layer. It solves the problem that
GRU can only propagate forward and can better extract
time-dependent features. The feature h extracted from
the spatial GAT model is input into the BiGRU model
for extracting time series features. The network struc-
ture of BiGRU is shown in Fig. 4, and the calculation
is shown in Eq. (6).

Ot = Wt X
→

t,X
←

t
[ ] (6)

where Wt represents the output at t time step, X
→

t repre-
sents the forward hidden layer output at t time step ob-
tained by inputting the output feature h of spatial di-

mension into GRU network. Similarly, X
←

t represents
the backward hidden layer output at t time step.

BatchNorm2d is used to normalize the output re-
sults of each layer of spatial-temporal modules, and
then the ReLU activation function is used to accelerate
the convergence of the model. The calculation is shown
in Eq. (7).

OST = ReLU BatchNorm2d Ot
( )( ) (7)

Fig. 4　 BiGRU network structure
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2. 3　 Connecting the output results of two types of
road networks

　 　 The output results of the spatial-temporal modules
of the real road network and the potential road network
are input into the fully connected layer for dimension
transformation. Then, the prediction results of the two
paths are weighted and summed to obtain the final out-
put results of the model, as shown in Eq. (8).

Output = W1Y
^
adj + W2Y

^
adp (8)

where, W1 and W2 are the weight coefficient, Y
^
adj is the

output result of the real road network, and Y
^
adp is the

output result of the potential road network.

3　 Experimental analysis

3. 1　 Datasets and data processing
Two datasets of real road networks are used in this

paper.
(1) METR-LA, the Los Angeles highway data-

set, was collected from March 1 to June 30, 2012.
(2) PEMS-BAY, a highway dataset in the Bay

Area of California, USA, was collected from January 1
to May 31, 2017.

The specific parameters of the datasets are shown
in Table 1.

Table 1　 METR-LA and PEMS-BAY datasets
Dataset Nodes Time interval / min Edges

METR-LA 207 5 1 515
PEMS-BAY 325 5 2 369

The datasets are divided into three parts: 70%
training set, 10% validation set and 20% test set.

Since the traffic network is a topological structure
reflected on the non-Euclidean distance, this paper
constructs the adjacency matrix of the traffic network
according to its features, and calculates the correlation
between the nodes of the adjacency matrix by using the
Gaussian kernel function according to the real distance
between the nodes of the road network and generates
the adjacency matrix. The calculation is as shown in
Eq. (9).

Wij = exp -
d2 vi,vj( )

σ2( )　
d2 vi,vj( )

σ2 ≥ k

0　 　 　 　 　 　 　 　 　 　 otherwise
{ (9)

where σ represents variance and k represents a thresh-
old, which is generally set as 0. 1.

The time series of traffic speed is standardized,
and the calculation is shown in Eq. (10).

x′ = x - μ
σ (10)

where μ is the mean, and σ is the variance.

3. 2　 Parameter setting
In this model, three layers of spatial-temporal

blocks are stacked. GAT is introduced in the spatial
dimension, and the multi-head attention mechanism is
used. The first two layers adopt concatenation multi-
head attention, and the last layer adopts average multi-
head attention; BiGRU is introduced in the temporal
dimension. The specific parameters of the model are
shown in Table 2. Adam optimizer is used to optimize
the model parameters. To prevent gradient explosion,
the clip_grad_norm_ method is used to carry out gradi-
ent clipping.

Table 2　 Model parameters
Model Model parameters Value

Spatial
dimension

Multi-head(concatenation
head K) 4

Multi-head
(average head) K + 2

Temporal
dimension

Hidden layer 2
Hidden unit 200

Hyper-parameter
Learning rate 0. 005
Batch_size 128

This paper takes the PEMS-BAY dataset as an ex-
ample to do a comparative experiment on the number of
spatial-temporal block stacking layers. It can be seen
from Table 3 that when predicting the traffic speed in
the next 60 min, the residual block is 3 layers, the
prediction performance of the model is the best.

Table 3　 Comparison of stacking layers of spatial-temporal blocks
Stacked layers MAE RMSE MAPE / %

2 1. 89 4. 35 4. 52

3 1. 85 4. 28 4. 41

4 1. 87 4. 33 4. 48

5 1. 89 4. 36 4. 51

Due to the multi-head attention mechanism
adopted in this paper, a comparative experiment is
conducted on the selection of K, and the most appro-
priate number of attention heads is selected according
to the spatial features of the adjacency matrix. As can
be seen from Table 4, when the number of heads of at-
tention is 4, the prediction performance of the model is
the best.
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Table 4　 Comparison of the number of multi-head attention
Number of head MAE RMSE MAPE / %

2 1. 88 4. 33 4. 43
4 1. 85 4. 28 4. 41
6 1. 87 4. 32 4. 42
8 1. 89 4. 33 4. 52

3. 3　 Evaluation index
The loss function is used to evaluate the error be-

tween the predicted value of the model and the true
value of the data set. The loss functions selected in this
paper include mean absolute error (MAE), root mean
square error ( RMSE) and mean absolute percentage
error (MAPE). The calculation of the three loss func-
tions is shown in Eqs (11), (12) and (13).

　 　 MAE = 1
n ∑

n

i = 1
Yi - Y

^
i (11)

　 　 RMSE = 1
n ∑

n

i = 1
Yi - Y

^
i

2 (12)

　 　 MAPE = 1
n ∑

n

i = 1

Yi - Y
^
i

Y
^
i

(13)

where, n represents the number of predicted samples,
Y
^
i represents the predicted value of the model, and Yi

represents the true value of the dataset.

3. 4　 Results
3. 4. 1　 Base lines

In order to evaluate the overall performance of this
model, the following models are used as baseline model
for comparison.

(1) ARIMA[19]:auto-regressive integrated moving
average model with Kalman filter is widely used in time
series prediction.

(2) FC-LSTM[20]:a recurrent neural network with
fully connected LSTM hidden units is used.

(3 ) STGCN[21]: a complete convolution frame-
work is constructed to solve the problem of time series
prediction in the field of transportation.

(4) DCRNN[22]:a bidirectional random walk on
the graph is used to capture spatial dependencies and
an encoder-decoder architecture with planned sampling
is used to capture temporal dependencies.

(5) TransGAT[23]: a node embedding algorithm
based on dynamic graph attention mechanism is pro-
posed to capture spatially dependent information. The
temporal features captured by temporal convolutional
network ( TCN) are added by jumping connection to
build a spatial-temporal module.

The prediction performance of the proposed model

in the next 15 min, 30 min and 60 min is analyzed and
compared with other benchmark models with the same
dataset. The experimental results are shown in
Table 5. It can be seen from the table that the pro-
posed model in this paper has the lowest index value of
MAE, RMSE and MAPE, and the prediction accuracy
has been significantly improved.

(1 ) For traditional time series models ( ARI-
MA[19], FC-LSTM[20] ), only temporal dimension fea-
tures were taken into account, but spatial dimension
features of traffic network were not taken into account.
The prediction performance of the model is inferior to
that of the model combined with spatial and temporal
features. For the prediction of the next 60 min, on
METR-LA and PEMS-BAY datasets, compared with
ARIMA and FC-LSTM, the MAE accuracy of this mod-
el is improved by 49. 71% , 20. 59% and 45. 27% ,
21. 94% respectively, the RMSE accuracy of this mod-
el is improved by 46. 49% , 18. 53% and 34. 15% ,
13. 71% respectively, the MAPE accuracy of this mod-
el is improved by 43. 79% , 25. 91% and 47. 23% ,
23. 16% respectively. It can be seen that the predic-
tive performance of the proposed model is significantly
better than that of these time series models.

(2) For the spatial-temporal combined baseline
models (STGCN[21], DCRNN[22]), the traffic speed in
the next 60 min is predicted on METR-LA and PEMS-
BAY datasets. Compared with STGCN and DCRNN,
the MAE accuracy of this model is improved by
24. 40% , 3. 61% and 25. 70% , 10. 63% respective-
ly, the RMSE accuracy of this model is improved by
24. 68% , 6. 84% and 24. 78% , 9. 70% respectively,
the MAPE accuracy of this model is improved by
22. 99% , 6. 86% and 24. 35% , 10. 61% respective-
ly. Therefore, the overall performance of the proposed
model is better than other benchmark models in the ex-
traction of spatial-temporal features, and has achieved
prominent results in traffic flow prediction.

As shown in Fig. 5, this paper plot 15 min-ahead
predicted values vs real values of SAdpGAT-BiGRU
and classical model DCRNN on a snapshot of the test
data. It can be seen that the curve fluctuation of the
two models is consistent on the whole. However, the
curve of DCRNN model ( at about 11 ∶ 00 am, 5 ∶ 00
pm) produces a sharp fluctuation, which drastically
deviated from the true values. Therefore, the proposed
model has better fitting effect and higher robustness.
3. 4. 2　 Computation time

As shown in Table 6, this paper compares the av-
erage training time and inference time of SAdpGAT-
BiGRU and DCRNN on the same GPU. It can be seen
that the time of each round of SAdpGAT-BiGRU is ob-

622 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 3 | Sep. 2024　



viously faster than that of DCRNN, which shows that
the proposed model has achieved better prediction

effect on a simpler structure.

Table 5　 Comparison of prediction results between the proposed model and the benchmark model

Dataset Baseline
15 min 30 min 60 min

MAE RMSE MAPE /% MAE RMSE MAPE /% MAE RMSE MAPE /%

METR-LA

ARIMA 3. 99 8. 21 9. 60 5. 15 10. 45 12. 70 6. 90 13. 23 17. 40
FC-LSTM 3. 44 6. 30 9. 60 3. 77 7. 23 10. 90 4. 37 8. 69 13. 20
ST-GCN 2. 88 5. 74 7. 62 3. 47 7. 24 9. 57 4. 59 9. 40 12. 70
DCRNN 2. 77 5. 38 7. 30 3. 15 6. 45 8. 80 3. 60 7. 60 10. 50
TransGAT 2. 71 5. 20 7. 69 3. 15 6. 16 8. 70 3. 48 7. 21 9. 80
SAdpGAT-
BiGRU 2. 68 5. 09 6. 89 3. 06 6. 06 8. 30 3. 47 7. 08 9. 78

PEMS-BAY

ARIMA 1. 62 3. 30 3. 50 2. 33 4. 76 5. 40 3. 38 6. 50 8. 30
FC-LSTM 2. 05 4. 19 4. 80 2. 20 4. 55 5. 20 2. 37 4. 96 5. 70
ST-GCN 1. 36 2. 96 2. 90 1. 81 4. 27 4. 17 2. 49 5. 69 5. 79
DCRNN 1. 38 2. 95 2. 90 1. 74 3. 97 3. 90 2. 07 4. 74 4. 90
TransGAT 1. 31 2. 78 2. 74 1. 62 3. 69 3. 66 1. 89 4. 38 4. 52

SAdpGAT-
BiGRU 1. 29 2. 69 2. 67 1. 59 3. 60 3. 58 1. 85 4. 28 4. 41

Fig. 5　 Curve fitting of 15 min on METR-LA

Table 6　 The computation time on the METR-LA dataset
Model Training time / (s·epoch -1) Inference time / s
DCRNN 325. 72 23. 49

SAdpGAT-BiGRU 42. 85 1. 79

3. 4. 3　 Multi-step predictive analysis
In order to further study the accuracy of the pro-

posed model at different prediction steps, the nodes in
METR-LA and PEMS-BAY datasets are selected, and
the curve fitting graphs of the real values and predicted
values of the nodes in the two datasets at different pre-
diction steps are drawn respectively, as shown in Fig. 6
and Fig. 7. With the increase of prediction time step,
the fitting degree of the speed curve between the pre-
dicted value and the real value of the node decreases
slightly, but the fluctuation range of the curve is con-
sistent as a whole, which shows that the model in this

paper is effective in traffic speed prediction. Mean-
while, it can reflect the real trend of vehicle speed
change, which is helpful to predict the changing traffic
conditions.
3. 4. 4　 Ablation experiment

In order to verify the effectiveness of each sub-
module of the proposed model, the experimental results
of four model variants are analyzed and compared with
SAdpGAT-BiGRU model.

(1) Remove_Muti-heads:remove the multi-head
attention mechanism for extracting spatial features.

(2) Remove _Residual: remove residual mecha-
nism, including spatial-temporal inter-block residual
and intra-block residual.

(3) Potential_road:remove the part of extracting
real road network features.

(4) Real_road:remove the part of extracting po-
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tential road network features.
Fig. 8 shows the prediction results of the model

and its variants in the future 60 min, using MAE,
RMSE and MAPE evaluation functions respectively.
From the curve fluctuation, it can be seen that each
sub-module of the proposed model is effective for the
whole model. In addition, the prediction results of
both the real road network and the potential road net-
work have declined, but the effective combination of

the two extracted traffic network information can obtain
better prediction results. Due to the spatial-temporal
correlation and dynamic uncertainty of the traffic net-
work, this paper not only considers the effect of the re-
al network structure on the traffic speed prediction, but
also considers the potential interaction between the
nodes of the traffic network. The prediction results also
prove the role of constructing adaptive adjacency matrix
in the potential network.

(a)The predicted step is 3　 　 　 　 　 　 　 　 　 　 　 　 (b)The predicted step is 6

(c)The predicted step is 9　 　 　 　 　 　 　 　 　 　 　 　 (d)The predicted step is 12
Fig. 6　 Fitting curves of real and predicted values of nodes in METR-LA data set at different prediction steps

(a)The predicted step is 3　 　 　 　 　 　 　 　 　 　 　 　 (b)The predicted step is 6

(c)The predicted step is 9　 　 　 　 　 　 　 　 　 　 　 　 (d)The predicted step is 12
Fig. 7　 Fitting curves of real and predicted values of nodes in PEMS-BAY data set at different prediction steps

4　 Conclusion

This paper constructs adaptive adjacency matrix

and uses GAT network to extract the spatial features of
real road network and potential road network effective-
ly, so that the model pays more attention to the correla-
tion between nodes and improves the generalization
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ability of the model. BiGRU network is introduced to
capture the time series features of the traffic network
forward and backward to improve the prediction accura-
cy of the model. The experimental results show that the

proposed model has good predictive performance on two
real datasets. The next study will be to consider exter-
nal factors such as weather.

(a) METR-LA

(b) PEMS-BAY
Fig. 8　 Ablation study of two data sets for different evaluation functions

References
[ 1] YE J, ZHAO J, YE K, et al. How to build a graph-based

deep learning architecture in traffic domain: a survey[J].
IEEE Transactions on Intelligent Transportation Systems,
2020, 23(5): 3904-3924.

[ 2] YU G, ZHANG C. Switching ARIMA model based fore-
casting for traffic flow[C] / / 2004 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing.
Montreal, Canada: IEEE, 2004: 1-4.

[ 3] WILLIAMS B M, HOEL L A. Modeling and forecasting
vehicular traffic flow as a seasonal ARIMA process: theo-
retical basis and empirical results[ J]. Journal of Trans-
portation Engineering, 2003, 129(6): 664-672.

[ 4] XIE Y, ZHANG Y, YE Z. Short􀆼term traffic volume fore-
casting using Kalman filter with discrete wavelet decompo-
sition[J]. Computer􀆼Aided Civil and Infrastructure Engi-
neering, 2007, 22(5): 326-334.

[ 5] SUN S, ZHANG C, YU G. A Bayesian network approach
to traffic flow forecasting[J]. IEEE Transactions on Intel-
ligent Transportation Systems, 2006, 7(1): 124-132.

[ 6] ZHANG L, LIU Q, YANG W, et al. An improved k-nea-

rest neighbor model for short-term traffic flow prediction
[ J]. Procedia-Social and Behavioral Sciences, 2013,
96: 653-662.

[ 7] ZHANG W, YU Y, QI Y, et al. Short-term traffic flow
prediction based on spatio-temporal analysis and CNN
deep learning [ J]. Transportmetrica A: Transport Sci-
ence, 2019, 15(2): 1688-1711.

[ 8] ZHENG H, LIN F, FENG X, et al. A hybrid deep learn-
ing model with attention-based conv-LSTM networks for
short-term traffic flow prediction[ J]. IEEE Transactions
on Intelligent Transportation Systems, 2020, 22 (11):
6910-6920.

[ 9] NARMADHA S, VIJAYAKUMAR V. Spatio-temporal ve-
hicle traffic flow prediction using multivariate CNN and
LSTM model[ J]. Materials Today: Proceedings, 2023,
81: 826-833.

[10] ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a tempo-
ral graph convolutional network for traffic prediction[ J].
IEEE Transactions on Intelligent Transportation Systems,
2019, 21(9): 3848-3858.

[11] GUO S, LIN Y, FENG N, et al. Attention based spatial-

922　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 3 | Sep. 2024



temporal graph convolutional networks for traffic flow fore-
casting[C] / / Proceedings of the AAAI Conference on Ar-
tificial Intelligence. Honolulu, USA: AAAI Press, 2019:
922-929.

[12] ZHANG W, ZHU F, LV Y, et al. AdapGL: an adaptive
graph learning algorithm for traffic prediction based on
spatiotemporal neural networks [ J]. Transportation Re-
search Part C: Emerging Technologies, 2022, 139:
103659.

[13] TA X, LIU Z, HU X, et al. Adaptive spatio-temporal
graph neural network for traffic forecasting [ J]. Knowl-
edge-Based Systems, 2022, 242: 108199.

[14] ZHAO W, ZHANG S, ZHOU B, et al. STCGAT: spatio-
temporal causal graph attention network for traffic flow
prediction in intelligent transportation systems[EB / OL].
(2022-03-21 ) [ 2024-01-04 ]. https: / / arxiv. org / pdf /
2203. 10749v1.

[15] WANG C, TIAN R, HU J, et al. A trend graph attention
network for traffic prediction[ J]. Information Sciences,
2023, 623: 275-292.

[16] VELICKOVIC P, CUCURULL G, CASANOVA A, et al.
Graph attention networks [ EB / OL ]. ( 2018-02-04 )
[2024-01-04]. https: / / arxiv. org / pdf / 1710. 10903.

[17] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.
Learning phrase representations using RNN encoder-de-
coder for statistical machine translation [ EB / OL ].
(2014-09-03 ) [ 2024-01-04 ]. https: / / arxiv. org / pdf /
1406. 1078v3.

[18] HOCHREITER S, SCHMIDHUBER J. Long short-term
memory[J]. Neural Computation, 1997, 9 (8): 1735-
1780.

[19] KAMARIANAKIS Y, PRASTACOS P. Forecasting traffic
flow conditions in an urban network: comparison of multi-
variate and univariate approaches[J]. Transportation Re-
search Record, 2003, 1857(1): 74-84.

[20] SUTSKEVER I, VINYALS O, LE Q V. Sequence to se-
quence learning with neural networks[C] / / Proceedings
of the 27th International Conference on Neural Information
Processing Systems. Montreal, Canada: MIT Press,
2014: 3104􀆼3112.

[21] YU B, YIN H, ZHU Z. Spatio-temporal graph convolu-
tional networks: a deep learning framework for traffic
forecasting[ C] / / Proceedings of the 27th International
Joint Conference on Artificial Intelligence. Stockholm,
Sweden: AAAI Press, 2017: 3634-3640.

[22] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional
recurrent neural network: data-driven traffic forecasting
[EB / OL]. (2017-06-06) [2024-01-04]. https: / / arx-
iv. org / pdf / 1707. 01926v1.

[23] WANG T, NI S, QIN T, et al. TransGAT: a dynamic
graph attention residual networks for traffic flow forecas-
ting[ J]. Sustainable Computing: Informatics and Sys-
tems, 2022, 36: 100779.

ZHANG Xijun, born in 1980. He received his
Ph. D, M. S. and B. E. degrees in Lanzhou University
of Technology in 2021, 2009 and 2003 respectively.
His research interests include big data processing, data
mining and analysis, embedded systems, machine
learning and intelligent transportation system.

032 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 3 | Sep. 2024　


