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Abstract
In order to improve target localization precision, accuracy, execution efficiency, and application

range of the unmanned aerial vehicle (UAV) based on scene matching, a ground target localization
method for unmanned aerial vehicle based on scene matching (GTLUAVSM) is proposed. The sugges-
ted approach entails completing scene matching through a feature matching algorithm. Then, multi-
sensor registration is optimized by robust estimation based on homologous registration. Finally,
basemap generation and model solution are utilized to improve basemap correspondence and accom-
plish aerial image positioning. Theoretical evidence and experimental verification demonstrate that
GTLUAVSM can improve localization accuracy, speed, and precision while minimizing reliance on
task equipment.

Key words: scene matching, basemap, adjustment, feature registration, random sample con-
sensus (RANSAC), unmanned aerial vehicle (UAV)

0　 Introduction

Scene matching is a computer vision technology
that determines image areas from corresponding scene
areas captured by different sensors, or finds their cor-
respondence[1] . Target localization of unmanned aerial
vehicle (UAV) using aerial images (video and photo
data) and scene matching techniques is the premise of
ground target localization of unmanned aerial vehicle
based on scene matching ( GTLUAVSM ) [2] . This
method has many advantages, including less tasks and
equipment, while achieving high localization precision
and avoidance of external disturbances[3] .

The research emphasis of GTLUAVSM lies on
multi-sensor registration and a localization strategy.
Multi-sensor registration requires high robustness and
instantaneous feature detection, feature description and
model estimation[4-5] . Localization strategies require a
good correspondence between a basemap and a target
image and depends less on hardware, and more on fast
and accurate coordinate calculation[6] . For such a lo-
calization method, domestic and overseas scholars have
conducted several studies.

Tian[7] proposed a remote sensing image matching
and target localization method based on a local feature

search with topological constraints. Firstly, the feature
detection component used a multiscale corner detection
algorithm. Then, a scale invariant feature transform
(SIFT) [8] descriptor was used for the feature descrip-
tion component. Finally, mismatching points were
eliminated on the basis of topological constraints to
achieve image matching and to acquire longitude and
latitude coordinates of important points in the image.
The localization precision of this method remains to be
improved. Additionally, the speed and robustness of
the feature matching technique needs enhancing. Wang
et al. [9] proposed a fast target localization method of
global image registration. First, a wavelet decomposi-
tion filter was designed for aerial images. Then, the
SIFT method was applied to angular points for feature
detection. A SIFT descriptor was then applied for the
feature description component of the process. Finally,
random sample consensus (RANSAC) [10] and a least
squares method were utilized to optimize the homogra-
phy matrix, achieve image matching and acquire the
longitude and latitude coordinates of the points of inter-
est. This method has high localization precision, but
its speed and feature matching accuracy remains to be
improved. Zhang et al. [11] came up with UAVs scene
matching algorithm based on center surrourd extremas-
star ( CenSurE-star ) . The process began with Cen-
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SurE-star for feature detection. Then, a fast retina fea-
ture detection method was used for the feature descrip-
tion step. Finally, the mismatching points were elimi-
nated with RANSAC to complete image matching and
acquire longitude and latitude coordinates of the points
of interest. This algorithm can satisfy the vision-aided
navigation demands of UAVs with high operation effi-
ciency. However, the robustness of feature-matching
operator needs to be improved. Zhang et al. [12] pro-
posed a ground target localization method of UAVs
based on position and orientation system (POS) and im-
age matching methods. A SIFT algorithm was applied
for the homologous registration of an aerial image.
Then, a matching area search method was used to auto-
matically generate a basemap. Next, a SIFT algorithm
was used for multi-sensor registration of aerial images
and its corresponding basemap. Finally, the 2D geo-
graphic coordinates of the aerial image were deter-
mined. This method uses image data to automatically
generate a corresponding basemap to achieve accurate
localization. But, the robustness and speed of the fea-
ture detector and descriptor need improvement. It can
be noticeed that the execution efficiency of RANSAC
should be enhanced since the reviewed matching area
methods totally depend on POS equipment.

The algorithms reviewed innovate and improve vari-
ous localization schemes based on scene matching, but
the following tasks still remain: (1) finding a corre-
sponding basemap or improving the low-similarity aerial
images produced by most methods; (2) improving the
robustness of the feature detector and feature descriptor;
(3) improving the robustness and speed of model esti-
mation; (4) improving the correlation and usefulness of
multi-sensor registration.

To solve the above problems, GTLUAVSM is pro-
posed. First, the proposed feature-matching algorithm
based on this article is used to complete scene matc-
hing. Then, a heterologous matching robustness estima-
tion method based on homologous matching is proposed
to optimize the heterologous matching results. Finally, a
corresponding base map generation and model solving
algorithm is proposed to improve the base map corre-
spondence and realize the positioning of any point in
aerial photography.

1　 GTLUAVSM principle

1. 1　 Algorithm steps
The steps of the GTLUAVSM method are listed below.
Step 1　 Acquire aerial images of known geograph-

ic information V1 , and continuously update the informa-
tion by acquiring subsequent aerial images V2, V3,…,

Vn, where n is the total number of images. The picture
M1 corresponds to the area (i = 1) that is extracted from
the basemap on the digital satellite map. Then, as
shown in Fig. 1, the 2D geographical coordinates of four
angular points are (w1,B1) , (W1,B1) , (W1,b1) and
(w1,b1) , where M1 is a C1 × R1 pixel image.

Fig. 1　 The structure of basemap

Step 2 　 First, this study applies camera distor-
tion corrections, atmospheric refraction corrections and
earth curvature corrections. These pretreatments are
conducted for images V1, V2,…, Vn . Then, a down-
sampling step is carried out for each image V1,V2,…,
Vn . Transverse and longitudinal pixels decrease by χ
times (where χ is set by a practical image quality meas-
ure). Then, as shown in Fig. 2, an adjacent feature
matching (parallel execution) step is carried out. Af-
ter adjusting a sparse beam method[13], images A1,A2,
…,An-1 are produced. Then, homography matrices a1,
a2,…,an-1 of the pairwise V1,V2,…,Vn are produced
by Eq. (1).
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Fig. 2　 The structure of scene matching

In Fig. 2, Vi is an aerial image; Mi refers to the
base map corresponding to Vi ; V

~
i refers to the image

after Vi is transformed according to the homography ma-
trix Ui . Finally, the pixel data are adjusted; as repre-
sents the homography matrix of adjacent images after
adjustment; h

~
i refers to homography matrix from V

~
i to

Mi; hi refers to a homography matrix from Vi to M1 .
The mappable subarea of all aerial images is c × r . n is
the total number of images, where 1 ≤ i≤ n , 1 ≤ s
< n and i and s are integers.
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Step 3　 This study applied an interpolation meth-
od to scale the transverse and longitudinal pixel values
of V1 to α1 and β1 times. The number of pixels are ad-
justed to correspond with the transverse and longitudi-
nal pixel count of M1 to add V

~
1 . Then, feature matc-

hing is conducted for V
~
i and M1 to obtain a homography

matrix h
~
1 from V

~
i to M1 . Finally, h1 is determined via

Eq. (2), where α1,β1 > 0 .

h1 = h
~
1
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Step 2 and Step 3 are executed at the same time.
In the two steps, the feature matching process is shown
in Fig. 3.

Fig. 3　 The feature matching algorithm

Feature matching includes homologous image
matching ( for aerial images) and multi-sensor image
matching (between aerial image and base map). The
following order is followed: feature detection, feature
description, descriptor matching and model estimation.

It includes following steps. Firstly, keypoints are
detected by fast adaptive robust invariant scalable fea-
ture detector (FARISFD) [14] . Secondly, characteristics
of descriptors is formed by robust overlapped gauge fea-
ture descriptor ( ROGFD) [15] . Thirdly, matching the
descriptors is adopted by bidirectional brute matching
based on Euclidean distance and eliminating mismatches
is employed by grid-based motion statistics (GMS) for
fast, ultra-robust feature correspondence [16] . Finally,
homography is worked out by random sample consensus
based on feature distance and inliers (RSCFDI) [17] .

Step 4 　 The overall adjustment of multi-sensor
registration is conducted to determine Ht,t . In this
step, Ht,t is the result after the adjustment for 1 ≤ t <
n (where t is an integer and its initial value is 1).

Step 5 　 First, Mt +1 is generated according to the
generation and model solution method of the corre-
sponding base map. Then, a multi-sensor registration
is implemented to find h

~
t+1 . Finally, ht +1 is obtained

by performing a number of calculations.

Step 6　 Determine whether t is equal to n - 1 . If
it is, execute Step 6; if not, change t to t- = t + 1 by re-
placing t in Step 3 and Step 4 and executing Step 3.

Step 7　 Hi,n is found via an overall adjustment of
multi-sensor registration. Hi,n is determined by Eq. (3).

Hi,n =
Hi,n

11 Hi,n
12 Hi,n

13

Hi,n
21 Hi,n
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Step 8　 The 2D geographical coordinates of (X i,
Yi) for any point (xi,yi) in Vi , for the computer im-
age coordinate system, are transformed by Eq. (4).
On the digital satellite map, the corresponding eleva-
tion information Z i is found point-wise (X i,Yi) to com-
plete target localization.

Xi = w1 +
W1 - w1

( ) Hi,n
11 xi + Hi,n

12 yi + Hi,n
13

( )

C1 Hi,n
31 xi + Hi,n

32 yi + Hi,n
33

( )

Yi = B1 +
b1 - B1

( ) Hi,n
21 xi + Hi,n

22 yi + Hi,n
23

( )

R1 Hi,n
31 xi + Hi,n

32 yi + Hi,n
33

( )

ì

î

í

ï
ïï

ï
ï

(4)

1. 2　 Relevant descriptions
(1) GTLUAVSM avoids the use of POS, i. e. ,

the method avoids the error influence resulting from
POS system, which weakens the dependence on air-
borne equipment.

(2) Since feature matching determines a geomet-
rical relationship between homologous and multi-sensor
images, this greatly affects target localization preci-
sion, accuracy and execution efficiency.

(3) FARISFD and ROGFD enhance robustness of
the feature detection and description process. GMS re-
moves mismatched points quickly. RSCFDI improves
the execution efficiency substantially, while the
RANSAC robustness is guaranteed. Therefore, the fea-
ture matching method proposed in this study has strong
robustness and speed.

(4) When focal length is small and flight height
is large, the slight error of the exterior orientation ele-
ment of the shooting photocenter in the traditional for-
ward intersection method will lead to large error in the
target localization process, while GTLUAVSM has
higher localization precision.

2 　 Robust estimation of multi-sensor regis-
tration based on homologous registration

2. 1　 Algorithm design
(1) To reduce the error among homonymy points,

the error of multiple independent observations of a ho-
mography matrix should be reduced as much as possi-
ble. (2) To avoid extra feature matching steps, the re-
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lationship between homography matrices should be le-
veraged. (3) Since homologous registration is more
accurate than multi-sensor registration, homologous
registration should be used as much as possible to en-
hance the accuracy of multi-sensor registration. (4)
Observation data should be fully utilized to limit the
use of ambiguous observation data and to ensure the
adjustment approximates the correct result.

2. 2　 Algorithm principle
L is set as the homography matrix, as expressed

as Eq. (5). The functions Zx = (L,x,y) and Zy =
(L,x,y) are defined as Eqs (6) and (7).

　 　 L =
l11 l12 l13
l21 l22 l23
l31 l32 l33
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　 　 Zx L,x,y( ) =
l11x + l12y + l13
l31x + l32y + l33

(6)

　 　 Zy L,x,y( ) =
l21x + l22y + l23
l31x + l32y + l33

(7)

Robust estimation of multi-sensor registration
based on homologous registration is executed via Steps
1 - 5:

Step 1　 Set the weight to pm = 1 . Let hm and as

be transformed by Eqs (8) and (9) to find H1,f for 1
≤ f≤ n , 1≤ m≤ f , 1≤ j , k≤ f , where f , m,
j and k are integers.

　 　 　 Hm,f =
∑

f

j = 1
p j h j( ) m( )

∑
f

j = 1
p j

(8)

　 　 　 h( j)(k) =

h j∏
k-1

z = j
a -1
z j < k

h j j = k

h j∏
j -k

z = 1
a j -z j > k
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Step 2 　 Calculate dm and σ by using Eq. (10)
and Eq. (11), respectively.

dm =

∫
c

x =0
∫
r

y =0

　
Zx h m( ) 1( ),x,y( ) -

Zx H1,f,x,y( )( )
2

+

Zy h m( ) 1( ),x,y( ) -
Zy H1,f,x,y( )( )

2
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(10)

σ =

　

∑
f

m = 1
pm d2

m

f - 1
　 　 　 　 　 　 　 　 　 (11)

Step 3　 Calculate the equivalent weight p-m accord-
ing to the IGGⅢ scheme[18] using Eq. (12), where um

=
dm

σ , k0 = 1. 5 , k1 = 3. 0 are eliminated points.

p-m =

pm um < k0

pm k0

um

k1 - um

k1 - k0
( )

2

　 k0 ≤ um < k1

0 um ≥ k1
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Step 4　 Replace pm with p-m in Eq. (12) to up-

date the H1,f approximation.
Step 5 　 Determine whether the difference between

the two estimation results is less than the tolerance. If it
is, output Hm,f ; if it is not, go back to Step 2.

2. 3　 Proof of Eqs (8) and (9)
Proof　 For the algorithm proposed in this study,

the precision of the homologous feature matching is
higher than that of multi-sensor feature matching, so as

is used for adjustment. As shown in Fig. 2, there are f
independent observations of the homography matrix that
update V1 until the final M1 is acquired. The updates
are made according to a geometrical relationship be-
tween V1,V2,…,Vf andM1 : h1,h2 a1,…,hf af -1 af -2…
a1 , where weights of the independent observations are
p1,p2,…,pf . The correction number for each observa-
tion is set to Em , then:

H1,f = h1 + E1

H2,f a1 = h2 a1 + E2

H3,f a2 a1 = h3 a2a1 + E3

…
Hf,f af-1 af-2… a1 = hf af-1 af-2… a1 + Ef
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(13)

when f = 1 , then:
H1,1 = h1 (14)

when f > 1 , then the function model of adjustment is

min∑
f

m = 1
E2

m P,Q( )( )

s. t.

h1 P,Q( ) + E1 P,Q( )( ) -
h2 a1

( ) P,Q( ) + E2 P,Q( )( ) = 0
h1 P,Q( ) + E1 P,Q( )( ) -

h3 a2 a1
( ) P,Q( ) + E3 P,Q( )( ) = 0

…
h1 P,Q( ) + E1 P,Q( )( ) -

hf af-1 af-2… a1
( ) P,Q( ) + Ef P,Q( )( ) = 0
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ï
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(15)

where Em P,Q( ) is the element of Em in the Pth row and
Qth column, and 1 ≤ P ≤ 3 , 1 ≤ Q ≤ 3 .

Then, the model function can be solved.
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then,
AV + W = O (20)

where O is a null matrix. According to Lagrange multi-
plier method, which aims to find the conditional extre-
mum, set K and form the function Φ . Then:

Φ = VTPV - 2 KT AV + W( ) (21)
Find the first-order derivative for V through Φ ,

and set it to 0. Then:
dΦ
dV = 2 VTP - 2 KTA = O (22)

The solution is

E1 = 1

∑
f

j =1
pj

∑
f

j =1
pj - p1( )h1 + p2 h2 a1

+… + pf hf af-1 af-2… a1
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j =1
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p1 h1 + ∑
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pj - p2( )h2 a1
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∑
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Then, combining Eqs (13), (14) and (23) .
Eq. (8) and Eq. (9) are established.

Similarly, the model function established according
to the observations of the homography matrix from V2,
V3,…,Vf to M1 can prove that Eq. (8) and Eq. (9)
are established.

The proof process is complete.

3　 Basemap generation and model solution

3. 1　 Algorithm design
(1) Since feature matching involves large calcula-

tions for each step, then the number of feature matc-
hing steps should be reduced as much as possible. (2)
An increase in image size will lead to an increase in
the number of calculations performed in the feature
matching step; therefore, the basemap should be as
small as possible. Meanwhile, the basemap should ac-
curately cover the aerial photography area as far as pos-
sible. (3) Due to the large difficulty of multi-sensor
registration, the differences between aerial images and
basemaps should decrease as much as possible. (4)
To simplify the adjustment and coordinate calculations,
multi-sensor registration of aerial images and their cor-
responding basemaps should be achieved as far as pos-
sible from each other to transform the multi-sensor reg-
istration of the aerial images and the same basemap.

3. 2　 Algorithm principle
The functions Zxmin(L) , Zxmax(L) , Zymin(L) ,

Zymax(L) and Z(L) are defined below.

Zxmax L( ) = max

Zx L,0,0( ),
Zx L,c,0( ),
Zx L,c,r( ),
Zx L,0,r( )

( ) (24)

Zymax L( ) = max

Zy L,0,0( ),
Zy L,c,0( ),
Zy L,c,r( ),
Zy L,0,r( )

( ) (25)

Zxmin L( ) = min

Zx L,0,0( ),
Zx L,c,0( ),
Zx L,c,r( ),
Zx L,0,r( )

( ) (26)

Zymin L( ) = min

Zy L,0,0( ),
Zy L,c,0( ),
Zy L,c,r( ),
Zy L,0,r( )

( ) (27)

Z L( ) =
1 0 - Zxmin L( )

0 1 - Zymin L( )

0 0 1
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The basemap generation and model determination
are executed as Steps 1 - 3:

Step 1 　 Calculate the 2D geographical coordi-
nates of the four angular points of the corresponding
basemap Mμ of Vμ for the points: (wμ,Bμ) , (Wμ,Bμ),
(Wμ,bμ) and (wμ,bμ) . The characteristics are as follows.
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wμ = w1 +
(W1 - w1) Zxmin H(

μ-1, μ-1 a
-1
μ-1)

C1

Wμ = w1 +
(W1 - w1) Zxmax H(

μ-1, μ-1 a
-1
μ-1)

C1

Bμ = B1 +
(b1 - B1) Zymin H(

μ-1, μ-1 a
-1
μ-1)

R1

bμ = B1 +
(b1 - B1) Zymax H(

μ-1, μ-1 a
-1
μ-1)

R1

1 < μ≤ n
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(29)

Extract the area pictures from the digital satellite
map and set it to Mμ ; then, transform Vμ using the ho-
mography matrix Uμ to find V︿ μ . Uμ is shown as

Uμ = Z Hμ-1,μ-1 a -1
μ-1

( )Hμ-1,μ-1 a -1
μ-1 (30)

Step 2 　 Interpolation method is used to scale
transverse and longitudinal pixel numbers of V︿ μ to αμ

and βμ times, and they are adjusted to be same as
transverse and longitudinal pixel numbers of Mμ to find
V
~
μ . Then, the feature matching step is conducted for V

~
μ

andMμ to obtain the homography matrix h
~
μ from V

~
μ toMμ .

Step 3　 Calculate hμ as below.
hμ = Z Hμ-1,μ-1 a -1

μ-1
( )[ ] -1 gμU (31)

gμ = h
~
μ Zμ 　 eμ ≤ k Eμ

Zμ 　 　 eμ > k Eμ
{ (32)

eμ =
Zxmax h

~
μ

( ) - Zxmin h
~
μ

( )( )2

+ Zymax h
~
μ

( ) - Zymin h
~
μ

( )( )2

Eμ =
　
c2 + r2
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Zμ =
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αμ
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0 1
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3. 3　 Relevant descriptions
(1 ) Multi-sensor registration after Vμ is trans-

formed to V
~
μ . This is done to reduce the differences

between aerial images and the base map.
(2) The implementation of Eq. (1) and Eq. (2)

is the same as that of Eq. (32), that is, calculate a
homography matrix of an original image transformation
by changing the image resolution and employing the ge-
ometrical relationship. The matching algorithm based
on feature points has excessive image detail and will
not change the transformation matrix by much. The im-
age size will simply reduce the operation efficiency of
the feature matching step. In this method, the resolu-

tion ratio of images is reduced in the feature matching
step and then a homography matrix of the original im-
age transformation is determined by Eq. (1), which
ensures the texture detail of the matched images and
improves matching precision. Any large differences in
the image detail of the same scene will result in a large
multi-sensor registration scale transformation, thus in-
creasing the difficulty of multi-sensor registration. In
this method, a multi-sensor image size is adjusted to
approximate the resolution ratio. Then, a homography
matrix of the original image transformation is deter-
mined according to Eq. (2) and Eq. (32). This re-
duces the difficulty of the multi-sensor registration
step.

(3) If Zxmin Hμ-1,μ-1 a-1
μ-1

( ) < 0　 or　 Zymin Hμ-1,μ-1 a-1
μ-1

( ) <
0,the image texture loss will be caused after the trans-
formation, which may lead to inaccurate feature matc-
hing. If Zxmin Hμ-1,μ-1 a-1

μ-1
( ) > 0 　 or　 Zymin Hμ-1,μ-1 a-1

μ-1
( ) >

0, the image size will increase after transformation and
this will increase the number of calculations of feature
matching step and waste memory. Thus, the function
Z(L) can ensure the image area after the transforma-
tion, located at the image center, is applied, which fi-
xes the map size to the largest extent to avoid texture
loss, while decreasing the number of calculations and
the memory expenditure.

(4) Eq. (32) and Eq. (33) aim to prevent
large-area inaccuracies of image transformations caused
by multi-sensor mismatching. Under the condition of
the correct multi-sensor registration, eμ and Eμ differ by
a small amount. Under the condition of wrong multi-
sensor registration, eμ and Eμ differ by a large amount.
So, in this experiment, the value of k is 5, and this
value only has a little influence on the algorithm. In
practical applications, the parameters can be adjusted
by the operation.

3. 4　 Proof of Eqs (4), (29) and (31)
Proof　 According to the computer image coordi-

nate system and the definition of a homography ma-

trix, where K
-

i and Kμ are nonzero constants, and they
can be solved via Eq. (35) and Eq. (36); p,q( )

refers to the point of M1 under computer image coordi-
nate system.
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Combining Eps (35) and (36),
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Let f = μ - 1 and introduce the points (0,0),
(c,0) , (c,r) , and (0,r) into Eq. (37) to obtain
image coordinates of four points in M1 . The image co-
ordinates of four angular points of the bounding rectan-
gle formed by the four points are calculated via the ex-
pression below:

Zxmin Hμ-1, μ-1 aμ-1
( ),Zymin Hμ-1, μ-1 aμ-1

( )( )

Zxmax Hμ-1, μ-1 aμ-1
( ),Zymin Hμ-1, μ-1 aμ-1

( )( )

Zxmax Hμ-1, μ-1 aμ-1
( ),Zymax Hμ-1, μ-1 aμ-1

( )( )

Zxmin Hμ-1, μ-1 aμ-1
( ),Zymax Hμ-1, μ-1 aμ-1

( )( )

Since the basemap is a part of the digital satellite
map, it is used as a map projection. Then, a geomet-
rical relationship is found and shown in Fig. 1. Then:

X i - w1

W1 - w1
= p

C1

Yi - B1

b1 - B1
= q

R1

ì

î

í

ï
ï

ï
ï

(38)

So, Eq. (29) is established.
Combining Eq. (35) and Eq. (38) and letting

f = n , Eq. (4) can be determined.
Similarly, Eq. (31) is found by using the geo-

metrical relationship between Vi and the geometrical re-
lationship between Vi and Mi .

The proof process is finished.

3. 5　 Proof of Eqs (1), (2) and (32)
Proof　 The homography matrix from image a to

image b is set to hab . An interpolation method is used
to scale the transverse and longitudinal pixel count from
a to α and β times to find image A . The transverse and
longitudinal pixel numbers of b are scaled to κ and ω
times to find image B , for α,β,κ,ω > 0 .

Under the computer image coordinate system, the
homonymy point of any point (xa,ya) in a is (xA,yA)
in A . The homonymy point of any point (xb,yb) in b is
(xB,yB) in B . Then:

Xa = α xa

Ya = β ya

Xb = κ xb

Yb = ω yb

ì

î

í

ï
ï

ï
ï

(39)

In accordance with the computer image coordinate
system and the definition of homography matrix, the
homonymy point (xab,yab) in b of any point (xa,ya) in
a is shown in Eq. (40), where k1 is a nonzero con-
stant, which can be solved by Eq. (40).
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Combine Eq. (39) and Eq. (40), the homony-
my point (xAb, yAb) in b of any point ( xA, yA) in A is
shown in Eq. (41), where k2 is a nonzero constant,
which can be solved using Eq. (41).
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Similarly, the homonymy point in B of any point
(xA,yA) in A is expressed in Eq. (42), where k3 is a
nonzero constant, which can be solved using Eq. (42).
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The homography matrix Hab from image A to image

B is shown in Eq. (43).

Hab =
κ 0 0
0 ω 0
0 0 1
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Let κ,ω,α,β = χ and Eq. (1) is established.
Let κ,ω = 1 ; α = α1 ; β = β1 ; and Eq. (2) is es-
tablished. Let κ,ω = 1 ; α = αi ; β = βi ;1 < i≤ n;
and Eq. (32) is established.

The proof process is finished.

4　 Experimental verification

4. 1　 Experimental setup
4. 1. 1　 Experimental platform parameters

Laptop configuration: the central processing unit
(CPU) is a 4th generation 2. 5 GHz i7 system with a
64 bit Win10, programming environment and a Visual
Studio 2015 linked with OpenCV 3. 00.
4. 1. 2　 Dataset

A region is chosen for the experiment. The tech-
nical parameters are shown in Table 1. The UAV video
frames and relevant data from a Google digital satellite
map are shown in Fig. 4 and listed in Table 2. The
shooting time difference between the video frames and
the satellite images is 18 months, and the difference in
the image resolution ratio is 2. Light conditions differ
greatly. The rotation angle of some images exceed
180 °. The change in the points of sight is large, and
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there is motion fuzziness and added noise influence.

Table 1　 The main technical parameters used for experiments

Name Parameters

Aerial photo time August, 2016

Aerial camera device DJI S800 six-rotor drone

Aerial camera SONY, Zenmuse PTZ system

Aerial camera fixed focus / mm 2. 130

Video size / pixels 1 920 × 1 080

Pixel size / mm 0. 009

Field of view / degree 35. 57 × 26. 83

Maximum distortion / mm 0. 015

Area range / km 3

Maximum terrain relief / m 373

GPS data update rate / s 1

GPS data initialization / min 3

GPS static observation / min 3

GPS eccentric component / m 2. 049, - 0. 501, 1. 381

IMU eccentric component / m 0. 000, - 0. 201, 0. 427

(a)The partial unmanned aerial vehicle video frames

(b)The partial Google digital satellite map

Fig. 4　 The partial video frames and digital satellite map used
for experiments

Table 2　 The POS data of the partial unmanned aerial vehicle
video frames used for experiments

Image 1　 　 2　 　 …

Latitude / ° 34. 59 34. 59 …

Longitude / ° 110. 13 110. 12 …

Altitude / m 2 302. 28 2 306. 48 …

Roll / ° - 2. 03 0. 13 …

Pitch / ° 0. 32 0. 18 …

Heading / ° 258. 34 257. 02 …

4. 1. 3 　 Experimental objects and related parameter
settings

　 　 Object 1　 The OpenCV parameter settings of the
more representative detectors and descriptors in recent
years are as follows:

SIFT: feature detector: group number is 4, layer
number is 4, contrast threshold is 0. 04, edge thresh-
old is 10. 00; feature descriptor is 128 dimensions.

Speeded up robust features ( SURF) [19]: feature
detector: fast-Hessain is 0. 6, group number is 4, lay-
er number is 4, non rotation-invariant; feature descrip-
tor is 64 dimensions.

Binary robust invariant scalable keypoints
(BRISK) [20]: feature detector: threshold is 30, group
number is 4; feature descriptor: pattern scale is 1.

KAZE[21]: feature detector: group number is 4,
layer number is 4, diffusivity type is DIFF _ CHAR-
BONNIER, threshold is 0. 001, non rotation-invariant;
feature descriptor is M-SURF of 128 dimensions.

Accelerated-KAZE[22]: feature detector: group
number is 4, layer number is 4, diffusivity type is
DIFF_CHARBONNIER, threshold is 0. 001, non rota-
tion-invariant; feature descriptor is M-SURF of 128 di-
mensions.

To make sure the number of groups and layers do
not influence the objectivity of the experiment, the
number of groups and layers of all traditional detectors
is 4, and the other parameters are set by default per
the OpenCV software.

Object 2　 Different sub-methods of the target lo-
calization method are shown in Table 3. And the steps
and parameters of feature matching algorithm are shown
in Table 4.

Table 3　 The numbers of different submethods

Submethods A B

1 Accelerated-KAZE
feature matching

Feature matching in
this article

2 None

Robust estimation
method for heterolo-
gous matching based
on homologous matc-
hing

3 Matching area search
method

Corresponding basemap
generation and model
solving algorithm

4

Ref. [ 23 ] method
(using this method to
do double slice for-
ward intersection)

None
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Table 4　 The steps and parameters of feature matching algorithm

Steps AKAZE The proposed feature
matching algorithm

Feature
detection

Accelerated-KAZE
( OpenCV default
parameters)

FARISFD ( default pa-
rameters)

Feature
descrip-
tion

Accelerated-KAZE
( OpenCV default
parameters)

ROGFD (default param-
eters)

Descrip-
tor matc-
hing

Brute matching
based on Euclidean
distance ( OpenCV
default parameters)

Brute matching based on
Euclidean distance and
GMS ( OpenCV default
parameters)

Model
estima-
tion

RANSAC ( OpenCV
default parameters)

RSCFDI (threshold:
60,100)

4. 1. 4　 Experimental objects
To measure the robustness and operation efficien-

cy of the algorithm and compare it with other algo-
rithms, four indexes are used for evaluation purposes:
precision mean square error, average matching time-
consuming, localization mean square error and average
time-consuming per frame.

Index 1 　 The measurement index of matching
precision is precision mean square error. The definition
is shown in Eq. (44) and Eq. (45), where Z is the
precision mean square error; m is the total number of
matches; R i is the precision ratio of the ith match; C i is
the number of correct matching pairs found by the algo-
rithm in the ith match; P i is the number of all matching
pairs found by the algorithm in the ith match.

　 　 Z = 1
m∑

m

i = 1
R i - 1( )2 (44)

　 　 R i =
C i

P i
(45)

Index 2　 The measurement index of the operation
efficiency of a multi-sensor registration algorithm is the
average matching time-consuming. The characterization
of this process is shown in Eq. (46), where H is the
average matching time-consuming; Li is the matching
time of the ith; m is the total number of matches.

H = 1
m∑

m

i = 1
Li (46)

Index 3　 The measurement index of the localiza-
tion precision is the localization mean square error.
The characterization of the process is shown in
Eq. (47) and Eq. (48), where M is the localization
mean square error; Si is the localization error of the kth
object; n is the total number of objects; (Xk,Yk,Zk) is

the observed value of the 3D-coordinate of the kth ob-
ject; (Xk,Yk,Zk) is the theoretical value of the 3D co-
ordinate of the kth object.

M = 1
n∑

n

k = 1
S2
k (47)

Sk = 　
Xk - xk

( )2 + Yk - yk
( )2 + Zk - zk( )2

(48)
Index 4　 The measurement index of operation effi-

ciency of the localization algorithm is the average time-
consuming per frame. The characterization of the process
is shown in Eq. (49), where T is the average time-consu-
ming per frame; t is the total time consumed by the locali-
zation algorithm; N is the total number of frames.

T = t
N (49)

4. 1. 5　 Experimental process
Experiment 1 　 First, 40 video frames of differ-

ent flight strips and satellite images in the correspond-
ing area are chosen. A multi-sensor homography matrix
is calculated via a manual point selection. Based on
the criterion of variable control, SIFT, SURF, KAZE,
Accelerated-KAZE, BRISK and FARISFD + ROGFD
are used for matching via the multi-sensor registration
process shown in Fig. 5. Then, the mean square error
of the precision ratio of each algorithm and the average
matching time of each algorithm are calculated.

Fig. 5　 The structure of feature matching

As shown in Fig. 5, multi-sensor registration is
conducted in the following order: pretreatment, feature
detection, feature description, descriptor matching and
model estimation. First, the feature point is found by
the detector. Second, the descriptor is utilized to gen-
erate the description of the feature point. Third, a vio-
lent matching method is used for bilateral matching of
the descriptor. Finally, a homography matrix is ob-
tained via a RANSAC calculation.

Experiment 2　 First, 200 aerial images of differ-
ent flight strips have been chosen. A1 + A2 + A3, B1
+ A2 + A3, B1 + A2 + B3, B1 + A2 + A4 and B1 + B2
+ B3 (GTLUAVSM) are used for localization based on
the criterion of variable control. Then, 10 measure-
ment points are selected at random from each aerial im-
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age. There are 2 000 measurement points in total. The
geographic information from the Google digital satellite
map is used as a theoretical value to find the mean
square error of localization for each algorithm. Every
time per image is calculated for each algorithm.

4. 2　 Experimental results and analyses
4. 2. 1　 Results and analyses of Experiment 1

To clearly and visually compare and analyze the
experimental results, a color line is used to express the

connecting line of the homonymy points. Then, the
black box is applied to express the perspective transfor-
mation result of the UAV video frame according to the
matching relation. At the same time, the effect dia-
gram of a map layer overlapping is found. For a frame,
the matching results of the different algorithms are
shown in Fig. 6. The precision ratio curves of different
algorithms are shown in Fig. 7. The matching data sta-
tistics are shown in Table 5.

(a)The correspondence by BRISK
　

(b)The superposition result of BRISK
　

(c)The correspondence by SIFT

(d)The superposition result of SIFT
　

(e)The correspondence by SURF
　

(f)The superposition result of SURF

(g)The correspondence by KAZE
　

(h)The superposition result of KAZE
　

(i)The correspondence by Accelerated-KAZE

(j)The superposition result of Acceler-
ated-KAZE

　
(k)The correspondence by (FARISFD

+ ROGFD)

　
(l) The superposition result of ( FAR-

ISFD + ROGFD)

Fig. 6　 The results of registration
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Fig. 7　 The accuracy curves

Table 5　 The data statistics of registration

Method Precision mean
square error

Average matching
time-consuming / s

BRISK 3 269. 92 1. 42

SIFT 2 007. 63 9. 11

SURF 1 108. 56 4. 61

KAZE 230. 82 17. 37

Accelerated-KAZE 164. 61 3. 46

FARISFD + ROGFD 23. 83 2. 78

The experimental results are analyzed as follows.
(1) BRISK is not applicable to multi-sensor reg-

istration that has been simplified, has an approximate
detection structure and a binary description structure
with large differences in illuminance, fuzziness degree
and rotation angle. Its matching precision is low, but
the speed is very fast.

(2) The matching precision of KAZE is high. This
is appropriate for a point of sight, rotation and scale
transformation; it shows good robustness, which benefits
from the design of the Hessian local maximum point and
overlapping strip after different scales in each layer are
normalized in the scale space. But, the speed is poor.

(3) Both the matching precision and speed of Ac-
celerated-KAZE are higher than those of KAZE, be-
cause the performance of fast nonlinear scale space is
stronger than nonlinear scale space.

(4) SURF is applicable to multi-sensor registra-
tion, and the speed improves greatly. This method
completely meets the speed requirement, and guaran-
tees the needed matching precision, which benefits

from the application of a fast Hessian matrix. Its draw-
back is that it is sensitive to fuzzy transformations and
illuminance transformations.

(5) Although SIFT is inferior to SURF on the
whole, it shows good rotation robustness when illumi-
nation and fuzziness change largely, which benefits
from the removal of any marginal responses and gradi-
ent histogram statistics. But the trade-off is that the
speed is not efficient.

(6) Both the matching precision and speed of
FARISFD + ROGFD are higher than those of KAZE.
The reasons are as below. First, FARISFD adaptively
selects the number of scale space groups, and the scale
space based on a transition layer is constructed. Then,
a feature score is calculated on the basis of AGAST.
Finally, traditional correction methods at the sub-pixel
level is simplified, which enhances the robustness and
speed of the feature detection step. ROGFD uses a
Scharr operator to calculate the image gradient. Then,
a second-order standard partial derivative is found to
construct an overlapping descriptive grid. In the end,
weighting, summation and normalization of the neigh-
borhood responses are conducted, which enhances the
robustness and the speed of the feature description
step. Thus, the matching effect is good.
4. 2. 2　 Results and analyses of Experiment 2

To compare and analyze experimental results
clearly and visually, all pixels in the images are
mapped to the Google digital satellite map given the lo-
calization results. Some localization results are shown
in Fig. 8. A localization error curve for all measure-
ment points is shown in Fig. 9. The localization data
statistics is listed in Table 6.

Table 6　 The localization data statistics

Methods Localization mean
square error

Average time-consuming
per frame / s

A1 + A2 + A3 3 191. 24 8. 11

B1 + A2 + A3 578. 61 6. 61

B1 + A2 + B3 315. 61 4. 51

B1 + A2 + A4 13 617. 25 3. 23

B1 + B2 + B3 225. 24 4. 56

The experimental results are analyzed as follows.
(1) The five curves present random fluctuation

trends with a unit of 10 points. This is because the
measurement points are located by a homography ma-
trix between images. Thus, the localization errors of
the measurement points in the same image are near
each other.

142　 HIGH TECHNOLOGY LETTERS |Vol. 30 No. 3 | Sep. 2024



(a)The localization result of (A1 +A2 +A3)
　

(b)The localization result of (B1 +A2 +A3)
　

(c)The localization result of (B1 +A2 +B3)

(d)The localization result of (B1 +A2 +A4)
　

(e)The localization result of (B1 +B2 +B3)

Fig. 8　 The localization results

Fig. 9　 The localization error curves

(2) The comparison between A1 + A2 + A3 and
B1 + A2 + A3 verifies that the proposed feature matc-
hing method largely improves precision, accuracy and
execution efficiency of target localization based on
scene matching.

(3) Compared with the matching area searching
method, the basemap generation and model solution
enhance the correspondence of the basemap, simplifies
the matching area calculations and improves precision,
accuracy, and speed of target localization based scene
matching. This is accomplished to avoid the use of
POS and reduce the dependence on airborne equip-
ment.

(4) Compared with the forward intersection meth-
od in Ref. [23], the basemap generation and model
solution have higher localization precision.

(5) Multi-sensor registration and the robust esti-

mation algorithm based on homologous registration car-
ries out an overall adjustment for all multi-sensor regis-
tration via a robust least square method. Although ho-
mologous registration error will reduce the localization
precision slightly, the adjustment method lowers the
gross error and system error of the overall multi-sensor
registration. So, localization precision is enhanced
greatly. Relative to homologous and multi-sensor fea-
ture matching, the calculation amount of the adjust-
ment algorithm has very little influence on the whole
analysis.

5　 Conclusions

The feasibility and advantage of GTLUAVSM are
verified by theoretical and experimental methods. The
conclusions can be listed below.

(1) The feature matching method improves preci-
sion, accuracy, and speed of target localization based
on scene matching.

(2) Basemap generation and model solution not
only improve precision, accuracy and execution effi-
ciency of target localization based on scene matching,
but also avoids the error influence of a POS system and
reduces the method’ s dependence on airborne equip-
ment.

(3) The multi-sensor registration robust estima-
tion algorithm based on homologous registration lowers
the gross error and system error of multi-sensor registra-
tion and improves the localization precision.

(4) Precision, accuracy, and speed of GTLUA-
VSM are high. Its engineering practice value is also
high.
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(5) This work recommends the following applica-
tion scopes and limitations. GTLUAVSM will benefit
target localization of small UAVs and UAV-based target
localization under interference environments. GTLUA-
VSM has high requirements for the robustness and
speed of feature matching, which largely depends on
the basemap.
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