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Abstract
Filter bank multicarrier quadrature amplitude modulation (FBMC-QAM) will encounter inter-

ference and noise during the process of channel transmission. In order to suppress the interference in
the communication system, channel equalization is carried out at the receiver. Given that the con-
ventional least mean square (LMS) equilibrium algorithm usually suffer from drawbacks such as the
inability to converge quickly in large step sizes and poor stability in small step sizes when searching
for optimal weights, in this paper, a design scheme for adaptive equalization with dynamic step size
LMS optimization is proposed, which can further improve the convergence and error stability of the
algorithm by calling the Sigmoid function and introducing three new parameters to control the range
of step size values, adjust the steepness of step size, and reduce steady-state errors in small step sta-
ges. Theoretical analysis and simulation results demonstrate that compared with the conventional
LMS algorithm and the neural network-based residual deep neural network (Res-DNN) algorithm,
the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence
speed, but also get smaller error values in the signal recovery process, thereby achieving better bit
error rate (BER) performance.

Key words: filter bank multicarrier quadrature amplitude modulation (FBMC-QAM), adap-
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0　 Introduction

The 4thgeneration mobile communication tech-
nology (4G) adopts orthogonal frequency division mul-
tiplexing (OFDM) technology, which requires the sub-
carriers to be strictly orthogonal to reduce inter-carrier
interference ( ICI ) [1] . Unfortunately, cyclic prefix
(CP) in OFDM consumes a certain amount of spec-
trum resources. In order to improve spectrum utiliza-
tion, many scholars have focused on new multi-carrier
modulation technologies based on OFDM, a good case
in point is filter bank multicarrier ( FBMC) modula-
tion[2] . FBMC is composed of an analysis filter bank
(AFB) and a synthesis filter bank (SFB), which does
not require strict orthogonality between subcarriers.
Meanwhile, unlike the rectangular window filter adopt-
ed in OFDM, the prototype filter applied in FBMC can
not only greatly reduce the out-of-band emissions
(OOBE), but also further improve spectral efficiency

by eliminating CP[3] .
Conventional FBMC system adopts offset quadra-

ture amplitude modulation (OQAM). OQAM transmits
the imaginary and real parts of the data signal separate-
ly, which differ by one-half unit time, transmit the
imaginary symbol when the interference is a real number
and transmit the real number symbol when the interfer-
ence is an imaginary number[4] . In essence, this modu-
lation method does not solve the interference of the
imaginary part, and because of the poor compatibility
between OQAM and multiple-input multiple-output
(MIMO) technology, the resources of the already ma-
ture OFDM are wasted[5] . The quadrature amplitude
modulation (QAM) in OFDM not only transmits real
and imaginary signals at the same time but also improves
transmission efficiency and can be well integrated with
existing MIMO. Compared with the OFDM system used
in 4G, FBMC-QAM can be better compatible with exist-
ing hardware devices, the difference is that the filter
used in OFDM is rectangular which requires CP, while
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FBMC-QAM applies a prototype filter without CP[6] .
Like OFDM, FBMC-QAM will also encounter in-

terference in the process of channel transmission, and
when the signal is transmitted to the receiver, the quali-
ty of the signal will deteriorate. In order to suppress the
interference, it is necessary to add an equalizer at the
receiver to eliminate the influence of the channel, and
the signal that arrives at the receiver after transmission
through the channel is processed contrary to the channel
characteristics, and finally the received signal is recov-
ered as correctly as possible. Generally, equalizers can
be divided into two categories: linear equalization and
nonlinear equalization. Linear equalization mainly in-
cludes the zero forcing (ZF) algorithm[7] and the mini-
mum mean square error (MMSE) algorithm[8], while
nonlinear equalization applies the decision result as
feedback to further adjust the equalizer when determi-
ning the signal output value. A good case in point is the
least mean square (LMS) algorithm.

Ref. [ 9 ] adopted the conventional fixed step
LMS algorithm to divide the received signal into the ex-
pected signal and the auxiliary signal, and iteratively
solves the weight parameters through an adaptive struc-
ture to make the weighted auxiliary signal close to the
target signal, thereby forming a spatial spectral peak in
the direction of signal arrival. Ref. [10] proposed a
novel residual network-based approach called Res-DNN
that utilizes deep learning to replace conventional chan-
nel equalization and demapping modules. Unfortunate-
ly, the algorithms in Ref. [9] and Ref. [10] have
the drawback of slow convergence speed.

In this paper, the conventional LMS is improved
by calling the Sigmoid function and adding new param-
eters to transform the conventional fixed step size into a
dynamic step size. Meanwhile, a dynamic step size
LMS optimization adaptive scheme is proposed, which
not only achieves faster convergence speed but also fur-
ther improves the signal error value and enhances the
performance of the system.

1　 FBMC-QAM system model

The transmitter system architecture of FBMC-
QAM can be shown in Fig. 1[11] . The transmitter out-
puts a discrete frequency-domain sequence group Xm,n,
which can be expressed as Eq. (1).

Fig. 1　 The architecture of a FBMC-QAM transmitter system

Xm,n = X0,n,X1,n,,XN-1,n
[ ]T (1)

where, 0≤m≤N - 1 is the number of subcarriers in
the frequency-domain and n∈{0,1,,N - 1} is the
number of sequences in the time-domain.

By performing odd and even sampling on Xm,n

separately, two sequence groups Xeven
m,n and Xodd

m,n with
N / 2 frequency-domain sequences can be obtained,
which can be represented as

Xeven
m,n = X0,n,X2,n,,X2t,n

[ ]T (2)
Xodd

m,n = X1,n,X3,n,,X2t +1,n
[ ]T (3)

where t∈{0,1,,N / 2 - 1}.
Xeven

m,n and Xodd
m,n are respectively multiplied by the

prototype filter f( i - nN) and performed by inverse fast
Fourier transform (IFFT) operation to obtain two time-
domain sequences am,n and bm,n, which can be formu-
lated as

am,n = F -1 Xeven
m,n f i - nN( ){ }

　 　 = ∑
2t

t = 0
Xeven

m,n f i - nN( )ej2πit / N
(4)

bm,n = F -1 Xodd
m,n f i - nN( ){ }

　 　 = ∑
2t -1

t = 0
Xodd

m,n f i - nN( )ej2πit / N
(5)

where F-1{·} represents IFFT operation and i is the
time-index of the prototype filter f( i - nN).

The output signal of the transmitter x(n) can be
denoted as

x n( ) = ∑
n∈Z

am,n + bm,n (6)

where Z represents the set of integers.
x( n) arrives at the receiver after transmission

through the wireless channel and the signal y(n) at the
receiver can be demonstrated by

y n( ) = h n( )∗x n( ) + v n( ) (7)
where, h(n) is the impulse response of the channel,
v(n) is the additive white Gaussian noise (AWGN) in
the channel, and ∗ is convolutional operations.

The signal of a single carrier exists in the time
domain, whereas for multicarrier modulation, it is
transformed from the time domain to the frequency do-
main after undergoing a Fourier transform through the
filter, which is also known as Eqs (4) - (5). In order
to simplify the expression of the unification equation,
so for the representation of Xm, n the frequency domain
representation is used.

2　 Equalizer model

After reaching the receiver, it goes through an
equalizer for channel equalization. The time domain
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symbols of the transmitter have been given at the send-
ing end, and for the generated time series, the odd and
even numbers are processed separately, and each of
them is processed by the filter and summed up togeth-
er, which is the working process of Eqs (4) - (6) to
get x(n). x(n) is added to the noise channel of v(n)
to get y(n) after the impulse response of the channel
of h(n). Eqs (1) - (6) are the working process of
the transmitter channel before transmitter signal enters
into the equalizer. The transmitter time-domain sym-
bols received by the receiver are essentially a transfor-
mation of the generated sequence, because the genera-
ted sequence is known and can be used directly by the
receiver here. Fig. 2 shows the schematic diagram of
the adaptive filter[12], where the receiving signal y(n)
is the input signal of the adaptive filter and s(n) is the
output of the adaptive filter, which can be depicted as
s n( ) = w n( )∗y n( )

= w n( )∗h n( )∗x n( ) + w n( )∗v n( ) (8)
where, ∗ represents convolution operation and w(n)
denotes equalizer coefficients.

Since w(n)∗h(n) is equal to the unit impulse
function δ(n), the signal estimate s(n) at the output
of the equalizer can be represented as

s n( ) = x n( ) + w n( )∗v n( ) (9)
Thus, it is not difficult to discover that in order to

make s(n) as close as possible to x(n), the equalizer
needs to eliminate the influence of v(n) as much as
possible.

Fig. 2　 The schematic diagram of an adaptive filter

Assume the length of the equalizer is N, its input
signal XN(n) and weight vector WN(n) at time n can
be respectively formulated as

XN n( ) = x0 n( ),x1 n( ),…,xn-1 n( )[ ]T (10)
WN n( ) = w0 n( ),w1 n( ),…,wn-1 n( )[ ] (11)
The output vector at the output of the equalizer

can be expressed as
s n( ) = WT

N n( )XN n( ) (12)
The error relation between the equalizer output sig-

nal and the desired signal d(n) can be represented as
e n( ) = d n( ) - s n( )

　 　 　 　 = d n( ) - WT
N n( )XN n( ) (13)

The cost function of the adaptive filter can be de-

fined by J(n) = E[ e2 (n)] . which E represents the
mean square of the error value, e(n) represents error
relation between the equalizer output signal and the de-
sired signal. Obviously, J( n) should be as small as
possible, which is determined by WN(n). In order to
obtain the optimal solution, the idea of minimum gradi-
ent is applied to update WN ( n) for each iteration,
which can be formulated as

WN n + 1( ) = WN n( ) - μ ⴠ J n( )[ ]

　 　 　 　 　 　 = WN n( ) - μ ⴠ E e2 n( )[ ]{ } (14)
where μ is the step size parameter in the algorithm that
is updated along the descending direction and
ⴠ[J(n)] represents taking the gradient of J ( n ),
which can be formulated as

ⴠ J n( )[ ] =
∂ E e2 n( )[ ]{ }

∂WN

　 　 　 　 　 = 2E e n( )
∂e n( )

∂WN
[ ]

　 　 　 　 　 = 2E e n( )· - XN n( )( )[ ]

　 　 　 　 　 = - 2e n( )XN n( ) (15)
Thus, the weight formula for the equalizer of the

LMS can be re-expressed as
WN n + 1( ) = WN n( ) + 2μe n( )XN n( ) (16)

3　 Dynamic step size algorithm

The weights of the equalizer are related to the
step size parameter μ. The larger μ, the fewer itera-
tions, and the more rapid the entire convergence
process. For the equalization system, if the step size μ
can be dynamically controlled, the equalization error
e(n) can be minimized. In the equilibrium starting
stage, e(n) is larger, as the error gradually becomes
smaller with continuous iteration, the step size also
needs to be casually smaller. Therefore, the Sigmoid
function is applied, which can be formulated as[13]

Sig n( ) = 1 - e -1 (17)
Since the Sigmod function is a function with strict

monotonicity, therefore, it can be utilized to change
the static step size μ becomes the dynamic step size
μ(n), which can be expressed as

μ n( ) = γ 1 - e -ω e n( ) 2
( ) (18)

where, γ (0 < γ <1) is applied to control the range of
values of the step size, ω is used to regulate the trend of
the values of the step size and control the monotonicity
of the system. ω is related to the initial value of the in-
put, which is usually less than 0. 5 to accelerate conver-
gence. Since the coefficient ω can completely control
the direction of the step function μ(n), under the con-
dition of guaranteeing γ, ω is turned into a function re-
lated to e(n), and a control factor c is added. c is a
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variable close to 1, it fluctuates slightly up and down as
compensation for the error, which can be represented as

ω n( ) = c e n( )e n - 1( ) (19)
The above equation associates the coefficient ω

with the equilibrium error e(n), and with the help of
the equilibrium error e(n - 1) of adjacent moments as
a feedback reference[14], the correlation function of the
two realizes that when the error is small, the coefficient
ω becomes smaller, so as to achieve the role of control-
ling the step-size, and the variable step-size function
can be expressed as

μ n( ) = γ 1 - e -c e n( )e n-1( ) · e n( ) 2
( ) (20)

Therefore, it can be seen from the above that not
only can the weights of the equalizer be changed in re-
al-time by means of gradient descent to better achieve
the minimal value required by the cost function, but
also through the relationship between the dynamic step
size as well as the control factor, the step size is
changed from the original uncontrollable to controllable
and converges faster in the stage of a large step by the
characteristic that the product of the equalization errors
of the neighboring equilibrium becomes smaller, and it
can be kept relatively stable in the stage of a small step.
Thus, the stability of the output signal is guaranteed.

The specific implementation steps of the proposed
dynamic step LMS algorithm are as follows, and its
flowchart is shown in Fig. 3.

Step S1　 For each input x(n), compute the out-
put signal s(n);

Step S2　 Initialize W(0), x(0);
Step S3 　 Using the desired output d(n), com-

pute the error signal e(n) to obtain the gradient ▽;
Step S4　 γ is applied to control the step length

range, the specific size can be adjusted according to
the initial e(0). During large step length stage, adjust
the coefficient ω, as small as possible can achieve the
effect of rapid convergence; in the step length of a rel-
atively small stage, for the coefficient ω for a small
amount of adjustment, according to the obtained e(n)
to determine whether it is necessary to end for the coef-
ficient ω of adjustment;

Step S5　 Return to step S2 until the end to ob-
tain the output sequence and the error sequence.

4　 Performance simulation and result analysis

For a given FBMC-QAM system, the simulation
parameters are shown in Table 1. In view of the time-
varying characteristics in real 5G mobile communica-
tion channels, International Telecommunication Union
Vehicle Channel B ( ITU-VB) [15] is chosen as the
wireless channel model for system simulation.

Fig. 4 ( a) and ( b) show the input raw signal
and the waveforms obtained after passing through the
noisy channel, the recovered signals are compared by
comparing the conventional LMS, the Res-DNN model
used in the Ref. [10] and the dynamic LMS proposed
in this paper for denoising the noisy signals, respec-
tively.

Fig. 3　 The flowchart of proposed dynamic step LMS algo-
rithm

Table 1　 System simulation parameters
Parameter name Parameter value

Modulation method 4QAM
Number of subcarriers (M) 1 024

Overlap factor (K) 4
Number of sampling points 1 000

Number of iterations 100
Equalizer model LMS, Res-DNN

dynamic LMS
Channel model ITU-VB
Noise model AWGN

Fig. 5 ( a) - ( d) illustrate the ideal recovered
signal and the waveforms after the noise signal is recov-
ered by three different algorithms, namely, LMS, Res-
DNN, and dynamic LMS, respectively. It can be seen
that there is less difference between the results of these
methods and the ideal signal, because the experiments
will be iterated 100 times, and the results of various al-
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gorithms are basically not much different after many it- erations.

　
(a) The initial signal at the transmitter　 　 　 　 　 　 　 　 　 　 (b) The noisy signal at the receiver

Fig. 4　 The signal waveforms

　
(a) Ideal　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (b) LMS

　
(c) Res-DNN　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (d) Dynamic LMS

Fig. 5　 The recovered signal by different algorithms
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　 　 Fig. 6(a) - (d) shows the ideal and errors of the
three algorithms in the process of recovering the signal
through LMS, Res-DNN, and dynamic LMS, and the
errors of the three algorithms in the process of recovering
the signal can be clearly seen that for the points after
the sampling point of 500, the difference between the al-

gorithms is not so obvious because the weights updated at
this time have basically been the same, and the differ-
ence between the three algorithms is not so big for the
points after the sampling point of 500, that is, in the re-
covering signal starting stage, the size of the dynamic
LMS error is significantly smaller than the other two.

　
(a) Ideal　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (b) LMS

　
(c) Res-DNN　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (d) Dynamic LMS

Fig. 6　 The error of different algorithms in the recovery process

　 　 Fig. 7 is a comparison of the error convergence of
the three algorithms and the ideal signal, what can be
seen is that the dynamic LMS is very close to the ideal
case error e(n), and the convergence speed is much
faster than the Res-DNN and the conventional LMS,
thanks to the control factors ω and γ, which can be
used to adjust the step size in the starting stage, after
the initialization of the first weights, to achieve the
effect of faster convergence. Res-DNN will be a little
slower and the error will be larger because it needs to
use the neural network to complete the training in ad-
vance, so it will be a little slower and the error will be

larger. Res-DNN converges a little slower and has a
larger error because it needs to utilize the neural net-
work to complete the training in advance.

Fig. 8 shows the bit error rate (BER) compari-
son of the three algorithms with the ideal signal. The
BER of conventional LMS is the worst, and dynamic
LMS is better than Res-DNN because dynamic LMS not
only utilizes the advantages of the conventional LMS,
but also can minimize the BER of the system during the
whole system recovery process because of the use of the
control factor c to use the two neighboring errors e(n)
and e(n - 1) as a feedback reference.
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Fig. 7　 Convergence comparison of different algorithms

Fig. 8　 BER comparison of different algorithms

5　 Conclusions
In this paper, a dynamic step size LMS optimiza-

tion algorithm is proposed based on the conventional
fixed-step LMS algorithm. Three kinds of control varia-
bles are adopted to control the value of the step size,
the steepness, and the steady-state, respectively. The
simulation analysis results demonstrate that compared
with the conventional LMS algorithm and the neural
network-based Res-DNN algorithm, applying the pro-
posed dynamic step size LMS optimization algorithm
can achieve a better performance in terms of error size
and convergence speed as well as BER.
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