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Abstract
This paper is concerned with a non-intrusive anomaly detection method for carving machine sys-

tems with variant working conditions, and a novel unsupervised detection framework that integrates
convolutional autoencoder (CAE) and Gaussian mixture hidden Markov model (GMHMM) is pro-
posed. Firstly, the built-in sensor information under normal conditions is recorded, and a 1D convo-
lutional autoencoder is employed to compress high-dimensional time series, thereby transforming the
anomaly detection problem in high-dimensional space into a density estimation problem in a latent
low-dimensional space. Then, two separate estimation networks are utilized to predict the mixture
memberships and state transition probabilities for each sample, enabling GMHMM to handle low-di-
mensional representations and multi-condition information. Furthermore, a cost function comprising
CAE reconstruction and GMHMM probability assessment is constructed for the low-dimensional rep-
resentation generation and subsequent density estimation in an end-to-end fashion, and the joint op-
timization effectively enhances the anomaly detection performance. Finally, experiments are carried
out on a self-developed multi-axis carving machine platform to validate the effectiveness and superi-
ority of the proposed method.

Key words: non-intrusive detection, variant working condition, rotating machinery, motion
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0　 Introduction
As one of the typical applications of motion control

systems, multi-axis carving machine systems (MAC-
MS) consisting of motors, sensors, drives, and trans-
mission mechanisms are used to achieve precise posi-
tion, speed, and mechanical attitude control[1] . How-
ever, various security threats are faced by networked
MACMS manufacturing and processing in the industrial
Internet scenario. The MACMS is not only threatened
by traditional functional safety issues[2], such as
equipment faults and failures, but also threatened by
cyber security issues[3] like sinusoidal attacks. These
issues will affect processing accuracy and product qual-
ity. Moreover, multiple working conditions may lead to
different potential process characteristic modes in the
manufacturing process, such as carving different mate-
rials and cutting different shapes. Therefore, it is nec-
essary to study a new unsupervised anomaly detection
method that is suitable for multiple working conditions.

Some fruitful progress has been made in the field
of unsupervised anomaly detection under multiple
working conditions in recent years. Cao et al. [4] uti-
lized the Gaussian mixture model (GMM) to capture
global multimodal information. However, the process
data of each normal condition are supposed to follow a
multivariate Gaussian distribution in GMM-based
anomaly detection[5], which is often difficult to satisfy
in practical scenarios. On this basis, Deng et al. [6]

used the hidden Markov model (HMM) to solve the
non-intrusive load monitoring problem, where the hid-
den state sequences are regarded as the working states
of the power-using equipment. The phased results
based on the HMM method have been achieved in un-
supervised anomaly detection under multi-condition
scenarios. However, these methods are difficult to be
applied to high-dimensional data directly due to the da-
ta dimensionality and the computational complexity.

To alleviate the curse of dimensionality, two-step
approaches[7-8] are widely used to generate reduced-
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dimensional features and then perform density estima-
tion in a low-dimensional space. But these methods
still have some drawbacks. For example, the models
are decoupled, the optimization objective functions are
inconsistent, and key information may be lost when it
is converted to the potential low-dimensional space.
Zong et al. [9] proposed an unsupervised anomaly de-
tection method based on deep autoencoding Gaussian
mixture model (DAGMM). A joint optimization strate-
gy was adopted by DAGMM, which combined the di-
mensionality reduction module composed of deep au-
toencoder (DAE) and the density estimation module
composed of GMM by a global objective function.
Since the joint optimization facilitated the information
transfer between the dimensionality reduction module
and the density estimation module, the performance of
anomaly detection was enhanced. Recently, DAGMM-
based variants have emerged[10-13], mainly focusing on
the improvement of the dimensionality reduction mod-
ule. However, the subsequent estimation module still
retains the basic GMM structure. The time-series cor-
relation is not sufficiently considered in the DAE-based
dimension compression module when processing sensor
monitoring data, and the density estimation module is
also deficient in variant working conditions.

On the other hand, the easiness of data acquisi-
tion is also one of the important factors to be consid-
ered. Data acquisition methods roughly consist of ex-
ternal sensor-based and built-in sensor-based, espe-
cially the built-in sensor-based is regarded as a non-in-
vasive method. Yang et al. [14] proposed that deploying
sensors on the drive mechanism would increase the
complexity of the device. The integration and compati-
bility of sensors with other components need to be con-
sidered[15] . Besides, these external sensors are sensi-
tive to environmental noise, temperature, and humidity
variations, which may affect their performance and ac-
curacy. In contrast, Huang et al. [3] addressed the
problem of intrusion detection under false data injection
attacks with a non-intrusive approach. This approach
neither affected the functionality of the existing system
nor caused security issues[16] .

Motivated by the above analysis, a convolutional
autoencoder ( CAE)-GMHMM-based non-intrusive a-
nomaly detection method for MACMS is proposed in
this paper. Firstly, a deep one-dimensional convolu-
tional neural network (1D-CNN) [17-19] is employed to
compress the high-dimensional monitoring time series
from the built-in sensors. On this basis, the problem of
anomaly detection in high-dimensional space is trans-
formed into a density estimation problem in a potential
low-dimensional space. To mitigate the impact of com-

plex variable working conditions on anomaly detection
accuracy, the low-dimensional representations and
temporal information are further modeled by GMHMM,
facilitating the global circulation of temporal information
within the model. Finally, the dimension compression
module and density estimation module are synchronously
optimized through an end-to-end strategy. The main
contributions of this paper are summarized as follows.

(1) To address the challenge of temporal series
modeling in high-dimensional space, a deep 1D convo-
lutional autoencoder is proposed to compress the high-
dimensional monitoring time series of the built-in sen-
sors into nonlinear low-dimensional representations.

(2 ) For high-accuracy anomaly detection tasks
under variant working conditions, the multi-axis carv-
ing process is described as a type of Markov process
with unknown working condition states, while the ob-
servation sequences are only related to the working
condition states.

(3) To obtain the optimal combination of com-
pression network and estimation network, a joint opti-
mization objective function that consists of reconstruc-
tion error, likelihood, and penalty term is designed.
Besides, the network is trained by the end-to-end strat-
egy, avoiding the need for pre-training.

1　 Problem statement

1. 1　 Composition of research object
As shown in Fig. 1, the networked multi-axis

carving machine system is mainly composed of four
parts: personal computer(PC), servo driver, embed-
ded board, and mechanical device. The PC control
system is equipped with 64-bit Windows 10 operating
system and necessary software simulation platforms
such as Simulink, PyQt5. PC is mainly employed to
realize the design and development of algorithmic simu-
lation block diagrams and the display of the human-ma-
chine interface (HMI).

Fig. 1　 Multi-axis carving machine experimental device
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As a data transfer station, the embedded board,
on the one hand, interacts with the servo system
through its peripheral interface, receives the position,
velocity, and torque information collected by the built-
in sensors, and uploads them to the PC. On the other
hand, it exchanges data with the PC and sends the ac-
tual control values calculated by the PC to the servo
driver. The communication between the embedded
board and the servo system adopts the CANopen proto-
col, and the data interaction between the PC and the
embedded board utilizes the transmission control proto-
col / Internet protocol (TCP / IP).

1. 2　 Description of the research problem
The carving process is a discrete assembly line op-

eration, often requiring adjustments of new equipment
parameters after processing a batch of products of the
same model before processing products of other mod-
els. The final product processing involves techniques
such as welding and assembly. A piece of equipment
often experiences different working conditions due to
varying manufacturing processes. The signals of the
built-in sensors under different working conditions con-
tinue to change over time, showing clear non-stationary
and non-linear characteristics.

Based on Ref. [20], the anomaly occurring in
MACMS is represented as

y( t) =
yP( t)
yV( t)
yT( t)
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where t is the time variable; y( t) is the output of the
built-in sensors; yP( t), yV( t), and yT( t) are the po-
sition, velocity, and torque components of the servo
motor, respectively; f( t) represents the abnormal por-
tion, and is assumed to only occur in the position sen-
sor channel. Due to the assumption that the entire
closed-loop control system is stable, anomalies in the
position sensor channel are able to be detected by col-
lecting and analyzing all built-in sensor information of
each axis.

Here, the anomalies can be mainly classified into
four categories including drift deviation anomaly
(DDA), fixed bias anomaly (FBA), accuracy degra-
dation anomaly (ADA), and periodic deviation anom-
aly (PDA) [21-22] .

(1) DDA refers to a type of anomaly where the
difference between the position sensor measurement
and the true value changes linearly over time. For ex-
ample, the harsh working environment with tempera-
ture changes is the main cause of DDA. The expression
of DDA is given by

f( t) = wdda·t (2)

where wdda represents the rate of change in DDA.
(2) FBA indicates that the difference between the

measurement of the position sensor and the actual value
is equal to a constant. Bias current or bias voltage may
be the main cause of FBA. The expression of FBA is as

f( t) = w fba (3)
where w fba is a non-zero constant.

(3) ADA is a decline in measurement capability
and precision. The average value of the position sensor
measurement remains constant, but the variance increases
as the accuracy grade diminishes. Electromagnetic inter-
ference, material fatigue, and sensor aging are the main
factors leading to ADA. The expression of ADA is as

f( t) ~ wada· N(0,σ2) (4)
where wada is a coefficient, f( t) represents a Gaussian
distribution with mean of 0 and variance of σ2 .

(4) PDA has periodicity over time, which may be
caused by sinusoidal attacks. The expression of PDA is
as follows.

f( t) = wpda·sin wt + φ( ) (5)
where wpda, w, and φ represent the amplitude, angular
frequency, and phase difference, respectively.

In a closed-loop control system like MACMS, the
occurrence of any anomaly will ultimately impact the
system output. Sensors play a critical role in the con-
trol system as they are responsible for detecting rele-
vant information. Therefore, the research objective of
this paper is to implement non-intrusive anomaly detec-
tion in MACMS by analyzing the system output from
multi-source built-in sensors.

2　 Algorithm design

As shown in Fig. 2, the entire architecture in-
cludes four parts: data acquisition and processing,
compression network construction, estimation network
construction, and optimization objective function de-
sign. First, multi-source sensor measurements under
normal conditions are obtained, including information
on the position, velocity, and torque of the two axes.
Next, a 1D convolutional autoencoder is utilized to
generate the low-dimensional representations of the
time series samples, while obtaining the reconstruction
error in Euclidean space. Then, the features of multi-
ple working condition samples in low-dimensional
space are further described as a class of Markov
processes with unknown working condition states. In
addition, Gaussian mixture model is embedded in
Markov processes to handle density estimation tasks.
Finally, a global optimization objective function is de-
signed to update the parameters of the compression and
the estimation network in an end-to-end fashion.
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Fig. 2　 Overall structure of CAE-GMHMM

　 　 Considering that there is a certain continuity in
the actual carving process, the sliding window tech-
nique is performed on the multivariate built-in sensor
data y t( )∈ ℝ T×Ds with the window length L, where ℝ
represents the set of real numbers, T is the length in
the time dimension, Ds is the sensor dimension. The
step size is set as S, and the data after the sliding win-
dow is y k,l( )∈ ℝ K×L×Ds, where K = T - L( ) / S + 1.
The working mechanism of the remaining three modules
is described in the following section.

2. 1　 Compression network
The encoding and decoding processes are conver-

ted from regular linear layers to convolutional and de-
convolutional layers by CAE for better access to the
deep nonlinear temporal information. CAE consists of
an encoder and a decoder. The encoder receives in-
window data as input and generates new low-dimen-
sional representations after encoding in 1D convolu-
tion. The encoding process is represented as

ze = MLN 1D conv y,θe1
( ),θe2( ) (6)

where 1D conv ·( ) denotes 1D convolution and
MLN ·( ) is fully connected layer; θe1 and θe2 are the pa-
rameters of convolution layer and fully connected layer,
respectively; ze ∈ ℝ N is the low-dimensional represen-
tations learned by the deep autoencoder with dimen-
sions N. Since the multivariate time series data con-
tains multiple channels D = Ds, multi-channel kernels
are created to process the input data.

The decoder reconstructs the original input data
through the low-dimensional representations obtained
from the encoder after 1D deconvolution, and the deco-

ding process is represented as
yd = 1D deconv MLN ze,θT

d1
( ),θT

d2( ) (7)
where 1D deconv ·( ) denotes 1D deconvolution; θT

d1 and
θT
d2 are the parameters of the fully connected layer and

deconvolution layer, respectively; yd is the reconstruc-
ted sample data.

CAE dimension reduction process is shown in
Fig. 3. The training objective of CAE is to minimize
the reconstruction error, and the mean square error is
used as the loss function, which is expressed as

J1 = 1
K × 1

L∑
K

k = 1
∑

L

l = 1
‖y k,l( ),yd k,l( )‖2

2 (8)

where y k,l( ) denotes the input samples after sliding win-
dow at moment k of window j, and yd k,l( ) denotes the re-
constructed samples, ‖·‖2

2 represents the L2 norm.

Fig. 3 　 Multi-source sensor measurements dimension reduction
process based on 1D convolutional autoencoder
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2. 2　 Estimation network
The original DAGMM anomaly detection method

utilizes GMM as the estimation network to obtain the
distribution of signal energy values, which enhances
the discrimination of some anomaly samples. However,
in order to enable the model to deal with multi-condi-
tion information, GMHMM is adopted to capture the
time dependence and correlation between variables in
the time series to fully utilize the hidden information.

Similarly, the estimation network is employed to
estimate the GMHMM parameters without the alterna-
ting algorithm of the expectation maximization.

First, given the model and observation sequences,
two multi-layer neural networks are utilized to predict
the state transition probabilities ε^ and the mixture mem-
berships γ^ . The mathematical expression of estimation
network is as

ε^ = softmax MLN ze,θm1
( )( ) (9)

γ^ = softmax MLN ze,θm2
( )( ) (10)

where θm1 and θm2 are the parameters of the two multi-
layer networks. ε^ (k) represents the state transition ma-
trix of U × U dimensions, and γ^ (k) represents the
membership matrix of U × M dimensions; U is the num-
ber of hidden states, and M is the number of Gaussian
distributions.

Next, λ^ = (π^ ,a^ ,c^,μ^ ,Σ^ ) is estimated by ε^ and γ^

obtained from the estimation network, and the GMM is
used to fit the probability density function of the obser-
vations in each hidden state.

π^ i = ∑
M

m = 1
γ^ i,m(1),a

^
i,j =

∑
K-1

k = 1
ε^ i,j(k)

∑
K-1

k = 1
∑
M

m = 1
γ^ i,m(k)

(11)

c^ i,m =
∑
K

k = 1
γ^ i,m(k)

∑
K

k = 1
∑
M

m = 1
γ^ i,m(k)

,μ^ i,m =
∑

K

k = 1
γ^ i,m(k)·z(k)

∑
K

k = 1
γ^ i,m(k)

(12)

Σ^ i,m =
∑

K

k =1
γ^ i,m(k) z(k) - μ^ i,m( ) z(k) - μ^ i,m( )T

∑
K

k =1
γ^ i,m(k)

(13)

where, π^ i, a^ i,j, c^ i,m, μ^ i,m and Σ^ i,m denote the initial
state, state transfer probability, mixture probability,
mean, and covariance, respectively; i = 1,2,…,U;
j = 1,2,…,U; m = 1,2,…,M.

Then the probability B = bi z(k)( )[ ]
U×K

is calcu-
lated according to Eqs. (12) and (13).

bi z(k)( ) =

∑
M

m = 1
c^ i,m

exp - 1
2 z(k) - μ^ i,m( )TΣ^ -1

i, m z(k) - μ^ i,m( )( )

2πΣ^ i,m

(14)
where · is the determinant of the matrix. Then, two
variables including the forward probability αi(k) and
the backward probability βi(k) are defined and compu-
ted. The forward probability is defined as

αi(k) = P z(1),z(2),…,z(k),q(k) = si ∣ λ^( )

(15)
where q(k) represents the hidden state at moment k, si is
the ith hidden state. The recursive formula is αi(k) =

∑
U

j =1
αj(k - 1)a^ j,ibi z(k)( ), and the initial value is

αi(1) = π^ ibi z 1( )( ). The backward probability is

βi(k) = P( z(k + 1),z(k + 2),…,z(K) ∣ q(k)
　 　 = si,λ

^ ) (16)

The recursion is βi ( k) = ∑
U

j = 1
a^ j,i b j z(k + 1)( ) ×

β j(k + 1), and initial value of βi(K) = 1.
Finally, the likelihood is computed based on

αi(k) and βi(k) [23] .

P( z |λ^ ) = ∑
U

i = 1
αi(k)βi(k) (17)

where P(z |λ^ ) is the likelihood probability value. For nor-
mal samples, a large likelihood can be obtained by ente-
ring them into GMHMM. In contrast, abnormal samples
result in a lower likelihood, and the likelihood tends to
decrease as the magnitude of the abnormality increases.

2. 3　 Objective function
So far, the two-step method of CAE downgrading

and GMHMM estimation has been completed, but they
are carried out independently. The CAE downgrading
process is trained without the guidance of GMHMM,
and the key information may be lost during dimension-
ality reduction. To address this issue, the global opti-
mization objective function is designed to induce repre-
sentations of potentially low-dimensional features that
are utilized for subsequent estimation tasks. The global
objective function is constructed as follows.

J θe1,θe2,θd1,θd2,θm1,θm2,λ( )

= J1 -
η1

K P z∣λ^( ) + η2P Σ^( )

= 1
K × 1

L∑
K

k = 1
∑

L

l = 1
‖y k,l( ) - yd k,l( )‖2

2 -

　
η1

K∑
U

i = 1
αi(k)βi(k) + η2∑

U

i = 1
∑
M

m = 1
∑
N

n = 1

1
Δn,n

(18)
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where θd1 and θd2 are the CAE parameters. The repre-
sentation of Σ^ i,m is

Σ^ i,m =
Δ1,1

⋱
ΔN,N

é

ë

ê
ê
ê

ù

û

ú
ú
ú
N×N

(19)

where Δn,n denote the diagonal values of Σ^ i,m, N is the
dimension of the low-dimensional representations.

The optimization objective function consists of
three parts: reconstruction error, likelihood, and pen-
alty term. ‖y k,l( ) - yd k,l( )‖2

2 is a distance meas-
urement between the input samples and the reconstruc-
ted samples, which is used to characterize the recon-
struction error introduced by the 1D convolutional au-
toencoder. P( z∣λ^ ) is computed from αi(k) and βi(k),
representing the probability of the observations when
the model parameters are known. By maximizing
P( z∣λ^ ), it is promising to find the optimal combina-
tion of the compression and estimation networks that
maximizes the likelihood of observing input samples. In
addition, to avoid trivial solutions when computing the
parameters of the GMHMM, a penalty term P(Σ^ ) is
utilized to penalize small values on diagonal entries.

Remark 1 　 The optimization objective function
with similar structure is common in the Refs. [9 -13].
Firstly, ignoring the reconstruction error will result in
the compression network not effectively capturing the
key features of the samples, which in turn affects the
quality of low-dimensional representations. Further-
more, likelihood is one of the prerequisites to ensure
that the model is able to handle the anomaly detection
task for multiple conditions. Finally, the penalty term
is designed to avoid the singularity problem in the co-
variance matrix, thus ensuring the stability and relia-
bility of the model.

The non-invasive anomaly detection process based
on CAE-GMHMM is summarized as Algorithm 1,
which is specifically divided into offline training and
online detection.

(1) Offline training phase: the objective function
hyperparameters η1 and η2 are predefined, and the net-
work parameters θe1, θe2, θd1, θd2, θm1, and θm2 are ini-
tialized. Then, the network parameters and GMHMM
parameters π^ i, a^ i,j, c^ i,m, μ^ i,m, and Σ^ i,m are
continuously updated according to the training set data
to complete the training. The ζth percentile of the out-
put likelihood of all training samples is set as the a-
nomaly detection threshold.

Anomaly detection process based on CAE-GM-
HMM is shown in Algorithm 1.

Algorithm 1 　 Anomaly detection process based on CAE-
GMHMM

Input: Multi-source sensor dataset y t( ), initial network pa-
rameters including θe1, θe2, θd1, θd2, θm1, and θm2, hyperpa-
rameters such as η1 and η2 .

Output: Detected result.

Offline training
1. Generate the low-dimensional representations ze and recon-
struction error J1 by Eqs. (6) - (8);
2. Predict the probabilities ε^ of state transfer and the mixture
memberships γ^ from Eqs. (9) and (10);
3. Obtain maximum likelihood estimation of GMHMM param-
eters π^ i, a^ i,j, c^ i,m, μ^ i,m, and Σ^ i,m from Eqs. (11) - (13);
4. Compute the forward probability αi(k) and backward prob-
ability βi(k) from Eq. (14) and Eq. (16);
5. Calculate the likelihood P( z∣λ^ ) via Eq. (17);
6. Compute global loss J θe1,θe2,θd1,θd2,θm1,θm2,λ( ) based

on J1, P( z∣λ^ ), and P(Σ^ ) via Eq. (18);
7. Update network parameters θe1, θe2, θd1, θd2, θm1, and θm2

with Adam optimizer;
8. Repeat the above steps until the convergence of the algo-
rithm is reached;
9. Obtain the optimal compression parameters θe1, θe2, GM-
HMM parameters π^ i, a^ i,j, c^ i,m, μ^ i,m, Σ^ i,m, and threshold v.
Online detection
10. Extract low-dimensional representations ze via Eq. (6);
11. Calculate the likelihood P( z∣λ^ ) from Eqs. (14) - (17)
and parameters π^ i, a^ i,j, c^ i,m, μ^ i,m, and Σ^ i,m ;
12. If P( z∣λ^ ) < v then
Result = 1 (Abnormal);
13. Else
Result = 0 (Normal) .

(2) Online detection phase: the low-dimensional
representations of the test samples are obtained through
the compression network. Then, the likelihood of the
test samples is calculated according to the low-dimen-
sional representations and the trained GMHMM param-
eters. Finally, compared with the threshold of all train-
ing sample likelihood, samples below the threshold are
considered anomalous.

3　 Case study

3. 1　 Case data
A self-developed multi-axis carving machine sys-

tem is used to validate the effectiveness and superiority
of the proposed CAE-GMHMM method. To simulate the
multiple working condition carving process in the physi-
cal world, various circular trajectory machining tasks
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with different parameters are carried out. In the experi-
ment, circles with amplitudes of 10. 0 cm, 9. 5 cm, and
9. 0 cm are sequentially processed. The circular trajectory
processing cycle of each parameter is set to 100 times.

Taking the circle with the amplitude of 10. 0 cm as
an example, the tracking trajectory can be defined as

refx = 10sin 2πt / 1600( ) + 20
refy = 10cos 2πt / 1600( ) + 20{ (20)

where the center of the circle is (20,20) . Then the
circle tracking task containing abnormal samples is car-
ried out with the parameter configurations shown in
Table 1.

Table 1　 Abnormal parameter configurations
Abnormal

type
Abnormal
description Abnormal manifestation

NS Normal state No abnormality occurs

DDA Drift deviation
anomaly f( t) = 0. 002 5t

FBA Fixed bias anomaly f( t) = 0. 125

ADA Accuracy
degradation anomaly f( t) ~ 0. 005N(0,1)

PDA Periodic deviation
anomaly f(t) = 0. 001 sin(2π / 200 × t)

　 　 Part of built-in sensor measurements under four
kinds of anomalies are shown in Fig. 4. The light-sha-
ded areas indicate that the system is under abnormal
conditions, while the white areas indicate that the sys-
tem is under normal conditions. Different types of
anomalies are simulated and injected into the position
sensor channel at the 4 800th sampling point. Drift de-
viation anomaly is shown in Fig. 4( a). Such type of
anomaly is directly proportional to time. The longer it
lasts, the more severe the impact on the equipment be-
comes, potentially leading to sudden changes in motor
speed. Fixed bias anomaly is illustrated in Fig. 4(b),
and it is observed that the motor speed suddenly chan-
ges the first time the anomaly takes effect. The degra-
dation of the sensor measurement capability and accu-
racy is shown in Fig. 4(c). It is found that the sensor
introduces noise with large variance. In Fig. 4(d), the
sensor measurement with periodic deviation anomaly is
displayed, and periodic fluctuations in the data are ob-
served. In a closed-loop control system, the system
still achieves good trajectory tracking performance due
to the robustness of the control algorithm. However,
prolonged exposure to abnormal conditions will acceler-
ate equipment fatigue and wear.

Fig. 4　 Built-in sensor measurements under four kinds of anomalies

　 　 The purpose of this paper is to analyze the data
obtained from built-in sensor measurements for detec-
tion. The position, velocity, and torque data of x axis
and y axis are collected in real-time from the built-in
sensors of MACMS for the experiments with a sampling
interval of 5 ms. In the data preprocessing process, the
data of each type of built-in sensor signals are intercep-
ted without overlapping parts using sliding windows,

and the length of each sliding window is L = 400. Tak-
ing the first working condition as an example, anoma-
lies occurred after carving 100 circles of normal state
(NS), and each anomaly lasted for 400 s. Therefore,
1 200 NS samples and 300 abnormal samples of each kind
were intercepted under three working conditions. 50% of
the normal samples are randomly selected for training,
and the remaining 50% are reserved for testing, using on-
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ly normal samples for model training. All abnormal sam-
ples and 50% normal samples are taken for model testing.

According to the mainstream anomaly detection
evaluation protocols[24-26], the anomaly detectors in the
experiments are evaluated by the area under the ROC
curve ( AUC-ROC ), the area under the PR cur-
ve (AUC-PR), and F1 score. The AUC-ROC summa-
rizes the ROC curves for true positives and false posi-
tives, AUC-PR is a performance metric that focuses
more on anomalies and summarizes the curves for accu-
racy and recall, and the F1 score combines accuracy
and recall, which is a balance between them.

3. 2　 Comparison test
In this section, the proposed method is compared

with other unsupervised deep anomaly detection meth-
ods including deep support vector data descripti-
on (DSVDD) [27], robust collaborative autoencod-
ers (RCA) [28], customized representations for a ran-
dom nearest neighbor distance-based method ( RE-
PEN) [29], deep isolation forest (DIF) [30], DAGMM,
CAE-GMM, and autoencoder ( AE)-GMHMM. DS-
VDD is an end-to-end version of support vector data
description (SVDD) for deep modeling that minimizes
the hypersphere volume of the network representation
during neural network training. RCA trains a set of au-
toencoders in a collaborative manner and learns their
model parameters and sample weights together. Given
a small batch, each autoencoder learns feature repre-
sentations and selects the subset of samples with the
lowest reconstruction error. It selects samples from
each autoencoder and exchanges samples among them
to update their model weights to avoid premature con-
vergence. REPEN implements random distance-based
outlier detection by learning low-dimensional represen-
tations of high-dimensional data, unifying the two relat-
ed tasks of representation learning and anomaly detec-
tion. Instead of describing the difference between sam-
ples with the help of metrics such as distance or densi-
ty, DIF utilizes the powerful representation ability of
neural networks to map the original data into a set of
new spaces. It judges the anomalies by carving out
their sparsity on these new spaces to achieve nonlinear
segregation. DAGMM is the basic framework, which
balances autoencoding reconstruction, density estima-
tion, and regularization. CAE-GMM is an improved
DAGMM that encodes and decodes the time-series fea-
tures of multivariate time series by 1D convolution dur-
ing feature extraction. AE-GMHMM utilizes two esti-
mation networks and the probabilistic model is replaced
with GMHMM.

The network structure of CAE consists of 3 convo-

lutional layers, 8 fully connected layers (FC), and 3
deconvolutional layers. The numbers of convolutional
kernels are 12, 24, and 24 respectively. The size of
convolutional kernel is 3, the step size is 1, and the
padding is 1. The nonlinear activation function is cho-
sen as ReLU used in all convolutional neural netwo-
rk(CNN) layers and max-pooling is applied for down-
sampling. Dropout is used to prevent over-adjustment
on training data. Eight fully connected layers run with
FC(1 200, 150) - FC(150, 100) - FC(100, 50) -
FC( 50, 15 ) - FC ( 15, 50 ) - FC ( 50, 100 ) -
FC(100, 150) - FC(150, 1 200). Estimation network
structures consist of two fully connected networks.
ε^ k( ) performs with FC(15, 20) - FC(20, 100) and
γ^ k( ) runs with FC(15, 20) - FC(20, 100). The Ad-
am optimizer is used to optimize the parameters of the
model with a learning rate of 0. 001. The number of
hidden states is U = 10, and the number of Gaussian
distributions is M = 10. The number of low-dimension-
al features is N = 15. The hyperparameters of the opti-
mization objective function are η1 = 1 × 10 -7 and η2 =
1 × 10 -9 respectively. The ζ = 5 percentile of all train-
ing sample likelihood is utilized as the anomaly detec-
tion threshold. The framework used for deep learning is
Pytorch 1. 12. The computer configuration for execu-
ting the program is as follows: Intel Core i7-12700,
NVIDIA RTX3080, 16 GB RAM.

The results of AUC-ROC, AUC-PR, and F1
scores for the compared methods and the proposed
CAE-GMHMM are shown in Table 2. As expected, the
best performance is achieved by the CAE-GMHMM in
most anomalous cases. DSVDD performs moderately
because it is difficult to find the boundary between ab-
normal and normal samples. For REPEN, it introduces
the outlier detection based on random distance into its
objective function, but when faced with time series da-
ta, it may not accurately capture the relationship be-
tween features. Although RCA learned the hidden rep-
resentations in data, it fails to consider the time series
correlation. DIF shows strong performance in detec-
tion, but its generalization ability is poor when faced
with complex working conditions. In DAGMM, the
temporal correlation and the effect of multiple working
conditions are not considered. CAE-GMM cannot ef-
fectively reflect the multi-working conditions. For AE-
GMHMM, the temporal correlation is disregarded dur-
ing feature compression, leading to potentially small
reconstruction error for anomalies. These last four
methods also constitute an ablation experiment, further
validating the effectiveness and superiority of the pro-
posed method.
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Table 2　 Comparison of detection performance between CAE-GMHMM and other methods
DDA FBA ADA PDA

AUC-
RUC

AUC-
PR F1 AUC-

RUC
AUC-
PR F1 AUC-

RUC
AUC-
PR F1 AUC-

RUC
AUC-
PR F1

DSVDD 0. 738 9 0. 853 6 0. 747 5 0. 759 5 0. 843 3 0. 797 5 0. 814 4 0. 894 8 0. 807 5 0. 970 6 0. 986 8 0. 932 5
RCA 0. 565 5 0. 725 5 0. 697 5 0. 507 8 0. 693 8 0. 672 5 0. 898 5 0. 950 3 0. 855 0 0. 915 3 0. 953 4 0. 877 5

REPEN 0. 531 9 0. 676 4 0. 602 5 0. 572 0 0. 636 7 0. 655 0 0. 778 1 0. 884 1 0. 757 5 0. 909 7 0. 959 1 0. 842 5
DIF 0. 735 8 0. 853 1 0. 732 5 0. 926 3 0. 939 4 0. 922 5 0. 725 5 0. 873 1 0. 827 5 0. 974 9 0. 982 8 0. 960 0

DAGMM 0. 537 5 0. 606 2 0. 558 3 0. 527 5 0. 679 2 0. 685 0 0. 567 5 0. 698 7 0. 711 7 0. 616 2 0. 724 3 0. 744 2

AE-
GMHMM 0. 751 7 0. 801 1 0. 859 5 0. 866 7 0. 891 5 0. 903 8 0. 906 3 0. 919 2 0. 923 7 0. 893 7 0. 915 4 0. 940 6

CAE-
GMM 0. 747 1 0. 813 8 0. 751 9 0. 753 8 0. 827 3 0. 831 4 0. 852 5 0. 881 4 0. 893 0 0. 821 2 0. 875 9 0. 911 8

CAE-
GMHMM 0. 976 0 0. 987 9 0. 945 0 0. 955 4 0. 978 1 0. 952 5 0. 989 0 0. 995 0 0. 982 5 0. 998 8 0. 999 3 0. 997 5

3. 3　 Deep feature visualization results
In order to intuitively visualize the deep features

obtained by compression, the t-distributed stochastic
neighbor embedding ( t-SNE) [31] is employed to pres-
ent the learned feature distribution.

Taking the detection of FBA as an example, the
feature visualization results of the four algorithms are

shown in Fig. 5, respectively. The implied feature dis-
tributions of normal samples under the three working
conditions of DAGMM are scattered, and there is some
overlap between normal and abnormal samples in Re-
gion 1. The feature distances of normal samples in dif-
ferent working conditions of AE-GMHMM are narrowed
due to the consideration of the condition factor. CAE-
GMM has a concentrated feature distribution with a long

Fig. 5　 t-SNE visualization results
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strip on the normal samples due to the extraction of the
temporal features, but there is still some overlap as
shown in Region 2, and the unknown anomalous sam-
ples are still mixed in the known normal samples. For-
tunately, the low-dimensional representations learned
by CAE-GMHMM are separable. Considering variant
working scenarios, the normal samples are basically
connected with each other, the distribution is more
concentrated, and the cluster contains all the normal
samples, which is well recognized by GMHMM to iden-
tify the normal and abnormal samples. Therefore, the
deep features learned by CAE-GMHMM are better than
the deep features learned by the other three algorithms.

4　 Conclusions

In this work, a non-intrusive anomaly detection
method for MACMS based on CAE-GMHMM is pro-
posed. Multivariate built-in sensor measurements are
adopted as input, and 1D convolutional autoencoder
and Gaussian mixture hidden Markov model for low-di-
mensional spatial density estimation are integrated.
Specifically, 1D convolutional encoder is utilized to
improve the ability to extract time series features during
data dimensionality reduction. The GMHMM is em-
ployed to model the low-dimensional representation
which is beneficial for the global flow of time series in-
formation within the model. Then, the parameters of
CAE and GMHMM are jointly optimized in end-to-end
training. Finally, through comparative experiments
conducted on the experimental platform, the experi-
ment results show that the proposed method is superior
to state-of-the-art methods.
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