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Abstract
The honey badger algorithm (HBA) , as a new swarm intelligence (SI) optimization algorithm

has shown certain effectiveness in its applications. Aiming at the problems of unsatisfactory initial

population distribution of HBA , poor ability to avoid local optimum, and slow convergence speed,

this paper proposes a multi-strategy improved HBA based on periodical mutation and t-distribution

perturbation, called MHBA. Firstly, a good point set population initialization is introduced to get a

uniform initial population. Secondly, periodic mutation and t-distribution perturbation are succes-

sively used to improve the algorithm’ s ability to avoid local optimum. Finally, the density factor is

improved for balancing exploration and exploitation. By comparing MHBA with HBA and 7 other Sls

on 6 benchmark functions, it is evident that the performance of MHBA is far superior to HBA. In

addition, by applying MHBA to robot path planning, MHBA can identify the shortest path more

quickly and consistently compared with competitors.
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0 Introduction

Recently, many fields such as image process-

2] civil engineering"’’ |, and oth-

ing[ E transportation
ers are facing increasingly complex optimization prob-
lems. The meta-heuristic algorithm (MA) can be flexi-
bly adapted to different scenarios due to the advantages
of its high exploration and exploitation capabilities.
Moreover, MA can better explore the solution space
and quickly find globally optimal solution'*!.

Swarm intelligence (SI) optimization algorithms,
as a branch of MA, have been favored by more and
more researchers. Sl algorithm is mainly inspired by
nature, especially biological systems, and simulates
the cooperative behavior of insects, animals, and oth-
ers through mathematical modeling™’'. Like MA, SI al-
gorithm has two common steps; exploration and exploi-
tation. A successful algorithm should be able to strike
the right balance between exploration and exploitation
to address the problems of local optimality and prema-
ture convergence .

Some classic Sls including particle swarm optimi-
zation (PSO)'") simulates the foraging behavior of a

flock of birds. The ant colony optimization ( ACO) "

simulates the foraging behavior of ants. The cuckoo
search algorithm ( CSA) "’ is inspired by the life habits
of cuckoos. These classical Sls often have the disad-
vantages of slow convergence speed when facing com-
plex problems, more difficult parameter selection, and
difficulty in dealing with high-dimensional problems.
To address these disadvantages, some famous Sls have
been proposed in the last decade. The grey wolf opti-
mization (GWO)""”is inspired by the hierarchical di-
vision of gray wolves in hunting for prey. The moth-
flame optimization (MFO)'"is inspired by moths fly-
ing around flames. The Harris hawk optimization
(HHO) """ is inspired by the various hunting strategies
of Harris hawks.

Some recently proposed Sls include golden jackal
optimizer ( GJO )!'*' | crested porcupine optimizer
( CPO )™ and  black-winged  kite
(BKA) '), Tt is worth mentioning that the recently
proposed SI often has the drawbacks of poor local

algorithm

search capability and difficulty in achieving a proper
balance between exploration and exploitation. There-
fore, this paper carefully studies and improves the re-
cently proposed honey badger algorithm ( HBA)''®/.

HBA simulates the digging and honeying behav-

iors of honey badgers during foraging. HBA are com-
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petitive and effective compared with traditional Sls, but
it still has some shortcomings. For example, the initial
population distribution is not ideal, the ability to avoid
local optimum is poor and the convergence speed is
slow.

To improve the optimization ability of HBA, this
paper proposes a multi-strategy improved honey badger
algorithm ( MHBA ) based on period mutation and
t-distribution perturbation. Firstly, to obtain an ideal
initial population, a population initialization based on
the good point set is introduced. Secondly, to enhance
the algorithm’s ability to escape local optima, a period-
ic mutation mechanism is integrated. Thirdly, to bal-
ance exploration and exploitation, the density factor of
HBA is improved. Finally, to further accelerate the
convergence speed of the algorithm, a t-distribution
perturbation is added to the global optimal individual.

1 HBA

HBA is inspired by the digging and honeying be-
haviors of the honey badger during foraging.

1.1 Smell intensity

In HBA, each honey badger will rely on the smell
of its prey for digging. Define the smell intensity I; to
indicate the proximity of the prey to the honey badger,
as shown in Eq. (1).

St
I =r ———— 1
i rl 4’TT (di)Z < )
Si = (x) —x,)"sd; = x,,, - x; (2)

In Eq. (1), t denotes the tth iteration, S: denotes
the source strength at the position of the ith honey
badger, d; denotes the distance vector between the prey
and the ith honey badger, and r, is a random number

in the interval [0,1]. In Eq. (2), x! denotes the po-

t

sition of the ith honey badger and x ., denotes the posi-
tion of the prey (i.e., the location of the elite solu-

tion ) .

1.2 Density factor

In HBA, the density factor 8(¢) is used to control
the transition of the algorithm from exploration to ex-
ploitation as shown in Eq. (3).

B(1) = Cer (3)
where, T represents the maximum number of iterations;
Cis aconstant C = 1, and C = 2 is taken in HBA.

1.3 Update individual positions
The position update of HBA is divided into two
main phases: the digging phase (r < 0.5) and the

honey phase (r = 0.5), r is a random number in the

interval [0,1].

1.3.1
In digging phase, HBA uses a cardioid-like mo-

Digging phase

tion for position update as shown in Eq. (4).
Xt = x;my +F-A-1- x:),,ey +F-r -

B(t) +d. |l cos(2mry) « [1 = cos(2mr,) ] |

(4)

1 < 0.
rs =0.5 (5)

-1 r, >0.5
where, x!*' denotes the position of the ith honey badg-

F =

er after the ¢t + 1 iteration update; A represents the
ability of the honey badger to capture food and A = 1,
A = 6 is taken in HBA; F is obtained through
Eq. (5) and is used to change the search direction;
ry, Iy, I, and ry are all random numbers in the inter-
val [0,1], and independent of each other.
1.3.2 Honey phase

During the honey phase, the honey badger search-
ing for the hive is shown in Eq. (6).

x = x, + F g B(10) - d; (6)
where, r¢ is a random number in the interval [0,1],

and the other variables are the same as in Eq. (4).

1.4 Greedy choice

The HBA uses Eq. (7) for greedy choice after
the digging phase or the honey phase to complete the
algorithm iteration.

t.+1 {+I < r
x;-%—l — xLL f:(x:+l) f(x:) (7)
xi f(xi7) > f(x;)
where, f( -+ ) denotes the fitness value of the objective

function.
2 MHBA

To address the shortcomings of HBA, a series of
improvement strategies is proposed to enhance the per-
formance and accuracy of HBA.

2.1 Good point set population initialization
Professor Hua Luogeng and other mathematicians
proposed the good point set, which is defined as fol-
lows''”); suppose that there exists a set Q, (w) =
Ul’" cw, Jz,n cw, e, J.v,n
clidean space H_ of dimensions which has a deviation

e(n) =C(J,u)n~""*, then the set Q, (w) is said to
be a good point set and J is a good point. The value of

cw; 1<w<=n} in a Eu-

the good point J is given by J” =2cos(2wD/p) , where
1<D=<n, p is the smallest prime number that satisfies
the expression p =2s + 3. The good point set popula-
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tion initialization is mapped through Eq. (8).

X;p ZJD'(UD_LD) + L, (8)
where, x; ,, denotes the Dth dimension of the ith indi-
vidual, and U, and L, denote the upper and lower
bounds of the Dth dimension.

Fig. 1 gives the distribution of 400 points genera-
ted by good point set population initialization and ran-
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(a) Good point set

dom initialization in two-dimensional ( 2D ) space.
From Fig. 1, it can be seen that the points generated
by the good point set are more uniformly distributed
than the randomly generated points, and achieve a uni-
form distribution globally. Thus, the search space can
be explored more comprehensively by initializing the
population based on the good point set.

Random initialization
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Fig.1 Distribution of 400 points

2.2 Periodic mutation mechanism

The introduction of a periodic mutation mechanism
allows MHBA to make large-scale periodic jumps in the
solution space, enhancing the algorithm’ s ability to es-
cape local optima, as shown in Eq. (9).
" =x! - [1 +b6,(0.5-n,) 8]

i

+ round(0.5 « (0.05 +r,)) * n,U + 6,
5:{1 tzmTO’ m =123, (9)
0 ¢ # mT,
1
b() — { q, > q> (10>
-1 ¢ =q

In Eq. (9), b, is either —1 or 1, which is deter-
mined by Eq. (10); T, is the mutation period, which
is smaller than the maximum number of iterations, and
T, =5; m denotes that ¢ is m times T, indicating the
execution of the mth periodic mutation; the parameter
0 is used to control whether to perform periodic muta-
tion and perturbation; n, and n, are random numbers
obeying the standard normal distribution; r, is a ran-
dom number in the interval [0, 1 ]; round ( - ) is
rounding; and U is a D-dimensional column vector
with elements taking 1. In Eq. (10), ¢, and ¢, are
random numbers in the interval [0,1].

Unlike ordinary periodic mutations, MHBA intro-
duces a perturbation'"®). The perturbation not only
simulates the deviation in the movement process of hon-

ey badgers, but also further prevents the algorithm from
falling into local optima from the perspective of algo-
rithm performance. The last term in Eq. (9) is the in-
troduced perturbation, where, n, denotes the magni-
tude of the perturbation and the vector U is used to add
an identical perturbation to each dimension of the ith
individual. Thus, the updated iteration equation for
MHBA is shown in Eq. (11).
xX;x[1+b, x(0.5-n,)]+
round(0.5 - (0.05 +r;)) - n,U
141 X, +tF-A-l-xX_ +F

x — prey prey
er, *B(t) + d, +| cos(2mr,) -
[1-cos(2mr,) ]| r<0.5

x +F-r,-B()-d r=0.5

prey

t = mT,

t # mT,

(11)

2.3 Linearly decreasing density factor

The HBA’ s density factor B(¢) hopes to enable
the transition from exploration to exploitation, but it
does not take into account the various stochastic sce-
narios in which the algorithm iterates. Meanwhile, the
value of B(¢) in HBA remains large in the late itera-
tion, which is very harmful to the algorithm for exploi-
tation behavior. In addition, the division between ex-
ploration and exploitation in the HBA is not clear, re-
sulting in an imbalance between exploration and exploi-
tation. Therefore, MHBA introduces a linear decreasing
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factor a(¢)" "’ for replacing B(t) as in Eq. (12).
a(1) = C a1 _LT) (12)
a, =2r, -1 (13)

where, g is a random number in the interval [0,1]; C
is taken as 2, which is the same as Eq. (3); «, is a
random number between —1 and 1. The range of a(t)
is ( =2,2), thus, la(t)!| decreases from 2 to O with
the number of iterations.

After 1 000 iterations, as shown in Fig. 2, the
value of the horizontal dashed line is 1; the vertical
dashed line represents the iteration number 500. In the
first 500 iterations, larger values of both la () | and
B(t) are beneficial for the algorithm to perform explo-
ration operations. However, the value of B(¢) remains
large late in the iteration, which is not beneficial for
the algorithm to perform the localized search, and
la(t) | can address this deficiency. Meanwhile, a(t)
is a number that can be positive or negative during the
iteration process, which can simulate the deviation of
the honey badger during its actual movement.

Curves for two different factors a(z)

Improved |a(s)| runs for the first time
Improved |a(#)| runs for the sccond time
The original A(r)

0 200 400 600 800 1 000
Iteration

Fig.2 The curves of the la(z) | for two runs and B(¢)

In addition, «(t) converges from2 (or —=2) to 0
during the iteration process. Therefore, Eq. (6) will
converge to the global optimum as the iteration progres-
ses, as shown in Eq. (14).
ca(t) - d)=x, (14)

o t
lim (x prey

mCx ey + F-r
2.4 t-distribution perturbation

The shape of the t-distribution curve is related to
the degree of freedom. The greater the degree of free-
dom, the closer the distribution is to a normal distribu-
tion''”). In this paper, the elite individual is per-
turbed by the t-distribution to realize the variation of
the population, because the position update of HBA is
very dependent on the elite individual, as shown in

Eq. (15). In MHBA, after executing Eq. (15)

Eq. (7) is required for greedy choice.

Xy = X + X, 0 trnd(1) (15)

In Eq. (15), trnd(t) is the coefficient of vari-
ance obeying a t-distribution with degrees of freedom of
the current iteration number ¢. Fig. 3 illustrates the
t-distribution function corresponding to the different de-
grees of freedom. Defining mutation factors obeying the
t-distribution located in [ =1, 1], the algorithm focu-
ses more on local search, while in other cases the algo-
rithm focuses more on global search. P is the probabil-

As the

degrees of freedom increase from 0.2 to 10.0, the re-

ity that the mutation factor lies in [ -1, 1].

gion where P is located becomes larger and larger.
From Eq. (15), the distribution of mutation factors in
MHBA is related to the number of iterations. Thus, the
t-distribution of this paper allows MHBA to search
globally at the beginning of the iteration and locally at
the end of the iteration.

t-distribution curves for different degrees of freedom
T
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Fig.3 The t-distribution function corresponding to differ-

ent degrees of freedom
The flowchart of MHBA is shown in Fig. 4.

3 Experimental results and analysis

To test and validate the performance of MHBA , 6
benchmark functions from Ref. [10] are used to make
a comparison with HBA and 7 advanced Sls. All re-
sults in the paper are from Intel (R) Core (TM) i7-
8550U CPU @1.80 GHz, 1.99 GHz and Windows 10
operating system, done on Matlab R2019b software.

3.1 Test functions and SIs for comparison

The information of the benchmark function is
shown in Table 1, where Range is the boundary of the
function search space, D is the dimension of the func-
tion, and f,

min

is the optimal value.
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Obtain the objective function and problem parameters (N, D, T, U, L).
Perform the good point set population initialization through Eq. (8).
Taking = 1.

Output the optimal solution and
optimal value.

Get the minimum value of this
iteration and its corresponding|
position

f

Determine if the position is out
of bounds. Use Eq. (7) for
greedy choice

T

Use Eq. (15) to perform a t-
distribution perturbation on the
elite solution

Using Eq. (12) to obtain the density factor
a(f), and generate the parameter

Use Eq. (4) for digging Use Eq. (6) for
phase honey phase
]
Determine if the position is beyond the
boundary

-

Fig.4 Flowchart of the MHBA

Use Eq. (7) for greedy choice |

Seven advanced Sls including PSO, GWO, MFO,
HHO, GJO, CPO, and BKA as well as HBA are com-
pared with the proposed MHBA. Meanwhile, to make
the experimental results more fair, the population size
of all algorithms is N =30 and the maximum number of
iterations is 7'=1 000. All algorithms are run inde-
pendently 30 times for each function, and the mean
(Mean) , standard deviation (Std), and rank ( Rank)

of these 30 results are calculated.

3.2 Qualitative analysis

In this section, 4 functions (F1, F2, F4, and
F6) are selected for qualitative analysis. Since these 4
benchmark functions are sufficiently representative of
unimodal and multimodal functions for various cases,
the other functions are their variants. The 6 subfigures
of Fig. 5 are (1) the 3D image of the benchmark func-
tion, (2) the search history of each search agent, (3)
the trajectory of the first dimension of the elite individ-
ual, (4) the average fitness value of the search agent,
(5) the curve of the density factor a(¢), and (6) the
convergence curves of all the algorithms.

Table 1~ Algorithm parameter setting
Type Number Name Range D Sin
F1 Schwefel’ s 2.22 [ -10,10] " 30 0.000 0
Unimodal P2 Schwefel” s 1. 20 [ ~100,100] ” 30 0.000 0
F3 Rosenbrock [ -30,30] " 30 0.000 0
F4 Rastrigin [ -5.12,5.12]" 30 0.000 0
Multimodal F5 Ackley [ -32,32]" 30 0.000 0
F6 Shekel 7 [0,10] » 4 ~10.402 9

The points with asterisks in the graph of the
search history represent the historical positions of the
search agent, and the large dots represent the final
optimal positions. From the search history in Fig. 5,
it can be seen that the MHBA achieves global search
with the help of the good point set population initial-
1zation.

The values of the dashed lines in the figure are 1
and —1. From the curves in Fig. 5, it can be seen
that o (¢) conforms to the theoretical analysis in
subsection 2.3 during the iterative process, realizing
the balance between exploration and exploitation. From
the convergence curves, MHBA obtains the optimal
value earlier than other optimizers, while some algo-
rithms fail to obtain the global solution due to local op-

timal stagnation.

3.3 Quantitative analysis

This section provides a full study of MHBA
through quantitative analysis. The results of the quanti-
tative analysis for all benchmark functions are given in
Table 2. It can be seen that MHBA outperforms all the
competing algorithms on F1, F2, and F4 — F6. The re-
sults for F3 are second only to HHO, but the results
obtained are far superior to HBA. MHBA’ s results for
F1, F2, and F6 are far superior to all the algorithms
and the optimal Mean is obtained.

Since the period mutation and t-distribution per-
turbation strengthen the algorithm’ s ability to avoid lo-
cal optima, the statistical results of MHBA tend to pos-
sess smaller Mean and Std than HBA | such as F1, F2,
F5, and F6 in Table 2. In conclusion, the quantitative
analysis reveals that MHBA largely improves the accu-
racy and stability of the HBA solution.
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Fig.5 Qualitative analysis results of MHBA

Table 2 Quantitative analysis of all benchmark functions

Function  Index PSO GWO MFO HHO GJO
Mean 0.044 1.050 x 10 32. 666 4.194 x10°* 6.037 x10 7"
Fl Std 0.023 2.267 x107* 24.766 2.279 x 10~ 1.165 x10°™
Rank 8 7 9 3 5
Mean 44,478 4,173 x107" 18560. 200 8.220 107" 39851.000
F2 Std 17.035 1.531 x107" 15587. 600 4.499 x10™'% 15489.200
Rank 7 6 8 4 9
Mean 86.914 26.725 2.678 x10*™ 0.003 92.536
F3 Std 29.653 0.710 1.463 x10*7 0.003 323.775
Rank 7 5 9 1 8
Mean 51.882 0.158 153.626 0. 000 19.177
F4 Std 13.210 0. 864 36.962 0. 000 33.863
Rank 8 6 9 1 7
Mean 0.102 1.64x10°" 14.998 8.882 x10°'° 8.941 x 107"
F5 Std 0.186 3.296 x 107" 7.154 0. 000 3.724 x107"
Rank 7 6 9 1 5
Mean -9.445 -10.050 -8.355 -5.259 -7.277
F6 Std 2.213 1.343 3.010 0.941 3.040
Rank 6 4 7 9 8
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Table 2 continued

Function Index CPO BKA HBA MHBA
Mean 5.260 x 10 2.154x10°™ 2.238 x10 7' 0.000
F1 Std 2.875x107% 1.179 x10° 7 9.916 x 10 ' 0.000
Rank 6 4 2 1
Mean 1.369 x10°% 2.482 x10 "¢ 7.198 x 10 " 0.000
2 Std 7.500 x10 % 1.359 x10°'¥ 0. 000 0.000
Rank 5 3 2 1
Mean 23. 469 27.086 21.830 0.017
F3 Std 0.492 1.188 0.509 0.612
Rank 4 6 3 2
Mean 0.000 0. 000 0.000 0. 000
F4 Std 0.000 0. 000 0.000 0. 000
Rank 1 1 1 1
Mean 1.125x10°" 8.882 x10°"° 0. 666 8.882x107'°
F5 Std 9.014 x10°'° 0.000 3. 645 0. 000
Rank 4 1 8 1
Mean -10. 4029 -10.180 -9.895 -10.403
F6 Std 7.594 x10°" 1.219 1.949 8.079 x10°'°
Rank 2 3 5 1

4 Robot path planning based on MHBA

In this section, MHBA is applied to a 2D grid
map to demonstrate its practicality.

4.1 Environmental modeling

The goal of the robot path planning problem is to
find the shortest distance for a robot to travel from the
starting point to the target point. In the map, the ob-
stacle raster is assigned a value of 0, and the passable
raster is assigned a value of 1. The dots in Fig. 6 indi-
cate robot positions, the arrows indicate moveable
paths, and the distance between neighboring grids may

be 1 or 2.

1€ >» 1

N2 1 Wz

Fig. 6 Robot’ s feasible region

Assuming that the robot reaches the end point af-
ter M steps from the starting point, the objective func-
tion is the obstacle-free path length L of the mobile ro-
bot, as shown in Eq. (16).

min L = 21d<m) (16)

In Eq. (16), d(m) is the Euclidean distance.
Let the positions of the robot before and after moving be
P, (x,y) and P, (x,y), then d(m) = 1P, (x,y)
-P, (x,y)!l.

4.2 Simulation experiment

To verify the performance of MHBA in path plan-
ning, MHBA is compared with PSO, MFO, HHO,
BKA, and HBA. The initial population of the 6 algo-
rithms is 30 and the maximum number of iterations is
50. Obstacles are randomly generated for each map),
starting in the upper left corner and ending in the lower
right corner. In Fig. 7, the parameter settings for each
map are MAP1. 30 x 30, 30% ; MAP2; 30 x 30,
40% ; MAP3. 40 x40, 30% ; and MAP4. 40 x40,
45% . Percentage indicates the proportion of obstacles
to the total grid.

Fig. 7 shows the convergence curves of the algo-
rithms and the optimal paths obtained by each algo-
rithm based on the convergence curves. The metrics
Mean, Sid, and Rank given in Table 3 are calculated
after 30 independent runs and Curve’ s data corre-
sponds to the convergence curves and paths in Fig. 7.
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Fig.7 Convergence curves and paths
As shown in Fig. 7, MHBA can recognize shorter to the good point set population initialization, as shown

paths in 4 different environments and outperforms the by the convergence curves of MAP1, MAP2, and
other 5 algorithms. Except for MAP3, MHBA enables MAP4. Since periodic mutation and t-distribution per-

fast convergence and outperforms all competitors. From turbation strengthen the search capability of the algo-
MAP3, it is clear that MHBA has a strong ability to rithm, MHBA can fully utilize the search space and
avoid local optima. From Table 3 it can be seen that find optimal solutions, such as the convergence curve
although the Mean indicators are not all the smallest, of MAP3. The balancing of exploration and exploitation
the Std is the smallest, indicating that the results of in MHBA is achieved through the factor a(z) , leading
MHBA are more stable. to optimal results in MHBA. Therefore, MHBA is more
MHBA tends to obtain optimal initial solutions due competitive than other algorithms in path planning.

Table 3 Statistical results of route planning

Index PSO MFO HHO BKA HBA MHBA
Mean 45.394 45. 347 46. 389 46. 209 45.843 44. 683
Std 0.713 0. 433 1. 420 1.381 1.245 0. 364
MAPI1
Rank 3 2 6 5 4 1
Curve 45. 699 44. 527 45.355 45.355 45.113 44. 527
Mean 49. 522 46. 697 55.024 51.509 47.591 46. 622
Std 1.939 1.848 3.250 4.470 1.958 0.756
MAP2
Rank 4 2 6 5 3 1
Curve 47.113 46. 284 51.941 57.355 56. 184 46. 284
Mean 62. 058 61.527 65. 247 63. 604 62. 679 61. 260
Std 1.262 1. 878 2.010 1.153 2.353 0.958
MAP3
Rank 3 2 6 5 4 1
Curve 60. 326 61.498 68. 770 63. 740 62. 326 59. 498
Mean 68. 401 68. 037 71. 695 68. 635 70. 187 68. 108
Std 0.510 1.344 2.391 1. 280 5. 305 0. 456
MAP4
Rank 3 1 6 4 5

Curve 68. 426 68. 184 74.770 69. 841 71.012 67.598
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5 Conclusion

To address the shortcomings of HBA, such as the
initial population distribution not being ideal, poor
ability to avoid local optima, and slow convergence
speed, the MHBA proposed in this paper introduces a
good point set population initialization and a linear de-
creasing factor based on the inclusion of period muta-
tions and t-distribution perturbations. To test the per-
formance of MHBA, 7 Sls besides HBA are used for
comparison on 6 benchmark functions including PSO,
GWO, MFO, HHO, GJO, CPO, and BKA. By per-
forming both qualitative and quantitative analysis, it is
learned that MHBA can determine the global optimum
of the test functions more quickly than competitors. Fi-
nally, MHBA is applied to robot path planning. By
comparing PSO, MFO, HHO, BKA, and HBA in the
4 scenarios, it is known that MHBA tends to identify
the optimal path faster and also has a strong ability to
avoid local optima. In short, the MHBA largely solves
the shortcomings of the HBA and can face more chal-
lenging problems. In the future, multi-objective and
binary versions of MHBA could be investigated, allo-
wing it to face a wider range of problems. In addition,
MHBA can be extended to other domains to solve more
practical problems, such as neural networks, workshop
scheduling, fault detection, and so on.
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