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Abstract
Medical visual question answering ( MedVQA) aims to enhance diagnostic confidence and

deepen patients􀆳 understanding of their health conditions. While the Transformer architecture is
widely used in multimodal fields, its application in MedVQA requires further enhancement. A criti-
cal limitation of contemporary MedVQA systems lies in the inability to integrate lifelong knowledge
with specific patient data to generate human-like responses. Existing Transformer-based MedVQA
models require enhancing their capabitities for interpreting answers through the applications of medi-
cal image knowledge. The introduction of the medical knowledge graph visual language transformer
(MKGViLT), designed for joint medical knowledge graphs ( KGs), addresses this challenge.
MKGViLT incorporates an enhanced Transformer structure to effectively extract features and combine
modalities for MedVQA tasks. The MKGViLT model delivers answers based on richer background
knowledge, thereby enhancing performance. The efficacy of MKGViLT is evaluated using the
SLAKE and P-VQA datasets. Experimental results show that MKGViLT surpasses the most advanced
methods on the SLAKE dataset.

Key words: knowledge graph(KG), medical vision question answer (MedVQA), vision-and-
language transformer

0　 Introduction

Medical visual question answering (MedVQA) in-
tegrates medical imaging and natural language process-
ing(NLP) techniques to analyze medical images and
provide accurate responses to natural language queries.
This endeavor seeks to enhance the quality of health-
care services for both physicians and patients.

In modern medicine, it is necessary to assess the
condition of the human body accurately; physicians of-
ten utilize various non-invasive medical sensors, inclu-
ding computed tomography and magnetic resonance im-
aging ( MRI), to acquire essential body data. Ad-
vances in medical imaging technology have significantly
contributed to the progress of the medical field[1-2] .
Analyzing medical images is a crucial skill for medical
assistive systems, and MedVQA systems[3] have been
developed for this purpose. Existing MedVQA methods
usually consist of four parts: extraction of visual fea-
tures from queried medical �images, extracting text fea-
tures from queried medical problems, combining the

previously proposed two modal features, and subse-
quently predicting the answer. Most MedVQA solutions
leverage advanced deep learning techniques, commonly
relying on methodologies like recursive neural net-
works[4-6] for text embedding and feature extraction,
and convolutional neural networks ( CNN) for visual
feature extraction. The bidirectional encoder represen-
tations from Transformer (BERT) [7] has emerged as a
preeminent model for representing textual information,
enjoying widespread usage. BERT employs a bidirec-
tional attention mechanism and a large-scale unsuper-
vised corpus to generate contextual representations for
each word in a phrase, ensuring relevance. The re-
markable success of the Transformer in NLP has sparked
significant interest in the field of computer vision.

Consequently, recent research in computer vision
has generated heightened interest in the Transformer ar-
chitecture and its components. Vision transformer
(ViT)[8] is the first vision architecture to treat image
chunks as words and encode them using Transformers.
When trained on large datasets, ViT achieved impressive
results in image recognition, as reported in Ref. [9].
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Nevertheless, access to adequate training data can
be challenging in the medical domain, especially when
dealing with rare cases and limited sample sizes. This
limitation can result in performance degradation when
ViT is applied to MedVQA tasks. The underlying rea-
son is that, despite its power, the Transformer model
has a limited inductive bias that can facilitate overfit-
ting. To normalize model capacity and enhance scal-
ability, subsequent studies have explored customized
sparse Transformer models tailored for visual tasks like
local attention[10-12] . By reintroducing hierarchical ar-
chitecture, these approaches aim to compensate for
non-locality loss. The Transformer architecture can
capture global features comparable to convolutional
neural networks.

As Wang et al. [13] suggested, humans can utilize
their past experiences when responding to questions re-
lated to visual content. To address this, the Facted-
VQA benchmark was introduced to present a series of
more complex questions, ensuring that the desired an-
swers necessitate external knowledge beyond image-de-
rived textual descriptions. Recently, knowledge graphs
(KGs) have demonstrated their effectiveness in infor-
mation retrieval and found broad applications across di-
verse domains, including search engines[14], as well as
natural language comprehension[15], among others. KG
representation learning aims to project entities and rela-
tions into a continuous low-dimensional vector space,
which can implicitly facilitate the computation of infer-
ence between entities and is a knowledge-intensive
task[16-18] . Like Facted-VQA, the MedVQA,
SLAKE[19] and P-VQA[20] datasets have presented new
research challenges and opportunities. These datasets
emphasize the dependence of answers on external
knowledge. By providing a knowledge graph, these
datasets facilitate the extraction of answers by represen-
ting complex relationships between entities in a multi-
relational manner.

To achieve an ideal MedVQA system, it is neces-
sary to emulate the expertise of a professional doctor
who can seamlessly integrate the knowledge accumula-
ted throughout their career to address image-based que-
ries. Nevertheless, in the proposed MedVQA task, the
central challenge lies in retrieving the most pertinent
and accurate entities from the knowledge graph.

The primary contributions of this work are as fol-
lows.

(1) This paper presents the medical knowledge
graph visual language transformer (MKGViLT), a vis-
ual language Transformer specially tailored for federa-
ting medical knowledge graphs. MKGViLT seamlessly
integrates visual entities from images, textual entities

from questions, and external knowledge about named
entities and their relationships within a medical image.
This integration fosters a deeper understanding of the
visual content, offering a unified representation of mo-
dal resources.

( 2 ) The medical knowledge graph modules
(MKGM) model has been engineered for knowledge
retrieval, utilizing a Transformer architecture that pres-
ents a unique approach compared with traditional mod-
els. In contrast to conventional methods, the MKGM
model demonstrates reduced vulnerability to significant
fluctuations during training. The Transformer facilitates
model convergence and alleviates oscillations during
the training process.

(3) Extensive experiments are conducted on the
benchmark datasets SLAKE[19] and P-VQA[20], and
experimental results show that the model outperformed
state-of-the-art methods on the SLAKE dataset.

1　 Related work

1. 1　 Medical vision question answer
Conventional MedVQA, building upon the ad-

vancements in VQA technology for natural images, is
gradually emerging in the medical domain. Since the
inaugural VQA-Med task was introduced in the 2018
ImageCLEF 2018 competition[1], VQA has found ap-
plication in the medical domain. Most MedVQA meth-
ods[21-22] are straightforward adaptations of cutting-edge
generalized VQA models to the medical domain. These
methods and their outcomes are summarized in the
2018 ImageCLEF-Med Challenge report. Attentional
mechanisms such as multimodal compact bilinear poo-
ling(MCB) [23], stacked attention networks (SAN) [24]

and bilinear attention networks (BAN) [25] have been
utilized to address the problem of learning joint repre-
sentations between medical visual and textual informa-
tion. Furthermore, Refs. [26,27] employed transfer
learning techniques to extract medical image features.
Recently, methods that directly tackle various aspects
of MedVQA have been introduced, including methods
for diagnosing model behavior, specialized framework
design, and techniques for generating models to handle
anomalies.

In recent years, the Transformer architecture has
become pivotal in the multimodal domain due to its su-
perior capability in processing sequential data. In Med-
VQA, the Transformer is primarily divided into two
main models: (1)the single-stream model, which utili-
zes self-attention to establish connections within and be-
tween various modalities, exemplified by Refs. [28,29];
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(2) the dual-stream model, which emphasizes the es-
tablishment of connections between modalities through
techniques such as cross-attention and co-attention.
Relevant work also includes those conducted by
Ref. [28]. However, these models need to address
knowledge-based capabilities. Before the advent of sin-
gle-channel Transformer models, the dual-flow model
was the primary model employed. Nevertheless, the
dual-stream model􀆳s excessive parameter count led to
overfitting on most medical datasets, resulting in sub-
optimal resource utilization and limited benefits. Con-
sequently, the single-stream model has gradually
gained broader application.

1. 2　 Knowledge graph embedding methods
Based on spatial distance methods, the transE ap-

proach, introduced by Bordes et al. [30], depicts enti-
ties and relationships within a d-dimensional vector
space h,t,r∈Rd . It ensures the embedding follows the
translation principle rule: h + r≈ t. To address the
limitation of transE in representing both entities and re-
lations within a single space, Wang et al. [31] intro-
duced individual hyperplanes for each relation. Each
entity can be mapped to these hyperplanes, enabling a
more comprehensive representation of the roles associ-
ated with each relation. This approach is instrumental
in handling scenarios where there are multiple relation-
ships between a pair of entities. Lin et al. [32] pro-
posed transR to separate the space of entities and rela-
tionships by projecting the entity ( h,t∈ Rk ) into the
space of relationships r∈Rd through the projection ma-
trix mr ∈ Rk×d . Although transR is based on linear
transformation, it still faces limitations in effectively re-
presenting nonlinear or more complex relationships.

Based on semantic matching methods, Bordes et al. [33]
conducted a semantic-level integration by aligning two
sets of entity-relation pairs: (h, r) and ( r, t). The
scoring function used by Bordes et al. [33] consists of
two distinct matching components: the linear and bilinear
blocks. To effectively capture intricate interactions in re-
lational data and promote efficient computation, Nickel
et al. [34] employed a mechanism known as embedded cy-
clic correlation. The mechanism of embedded cyclic cor-
relation can be interpreted as a compressed tensor product
that enables the learning of combined representations for
entities and relations. Zhou et al. [35] proposed a novel ro-
tational combination mechanism for considering additional
path information and symmetric relations. However, ap-
proaches based on translational distance and semantic
matching typically have limited capacity to learn compre-
hensive feature and interaction information due to their
simplified architectures, thereby limiting further enhance-

ments in model performance.

2　 Methods

The problem is defined as follows: given a medi-
cal image I, a related question Q, and a knowledge
graph G containing head entities, relations, and tail
entities, the objective of the MKGViLT task is to pre-
dict the answer Y. This prediction can be formally re-
presented using mathematical notation, as shown in
Eq. (1).

Y = argmaxF AQ,I,G,θ( ),A ∈ ￡ (1)
where, ￡ represents the set of potential answers; A
denotes one of the answers; F and θ signify the
MKGViLT framework and its parameters, respectively.
Within the MKGViLT model, the Transformer encoder
is employed to gather and merge information from the
question, image, and knowledge graph.

2. 1　 Medical vision-and-language transformer for
joint knowledge graph

Architecture overview: MKGViLT consists of five
main components as shown in Fig. 1. (1) Image fea-
ture extraction using CNN-based ResNet-101[36] to cap-
ture low-level features. (2) Problem feature extraction
using a BERT-based model to capture contextual infor-
mation. (3) Feeding of the problem into the MKGM
model to capture the problem-related entity information
and the relationship information. (4) A Transformer
encoder is used to fuse the extracted image ( visual)
and problem ( linguistic) features with graph informa-
tion ( textual ) features and to model the high-level
global features. (5) The encoded features are aver-
aged, sampled, and regularized by the Transformer
encoder and fed into the dense layer for final predic-
tion.

Pre-trained models such as VGG-19[37], DenseNet[38],
and ResNet-101 are employed to extract image charac-
teristics. The dimensions of image I are adjusted to
match those of ResNet-101 ( 224, 224, 3 ). Since
ResNet-101 is not utilized for classification, only two
fully connected layers and the final average pooling lay-
er output were retained as image features. The image I is
fed into the ResNet101 network to get the medical image
features as shown in Eq. 2.

VI = ResNet101 I( ) (2)
The image feature matrix VI is inputted into another

kernel, a 3 ×3 two-dimensional(2D) convolutional lay-
er, and passed to a dense layer for channel reduction.
Reshaping and flattening are performed to maximize in-
formation retention and output an image feature matrix
V′

I . This design aligns the first dimension of the image

57　 HIGH TECHNOLOGY LETTERS | Vol. 31 No. 1 |Mar. 2025



feature matrix with the first dimension of the question
feature matrix while maintaining as much information

as possible.
V′

I = Convolution2D VI
( ) (3)

Fig. 1　 Overview of the proposed MKGViLT model

　 　 All medical problems are lowercased to avoid hav-
ing two identical words with different cases in the re-
sponse. The transformer model requires that the input
vector be one-dimensional(1D). Consequently, each
input problem q ∈ δS× V is pre-trained using BERT.
This pre-training ensures a richer, contextually rele-
vant representation of the word vectors. In this study,
S represents the length of the problem sequence, and V
denotes the dimensionality of the BERT word vector.
Given that the Transformer cannot capture positional
information and involves two modalities, positional em-
beddings Qpos ∈ δS×D and modal-type embeddings Qtype

∈ δD are introduced. The position embedding matrix
and the corresponding modal type embedding vectors
form the problem embedding Q′∈ δS×D, with D indica-
ting the number of dimensions required for input to the
Transformer encoder:

Q′ = BERT q( ) + Qpos + Qtype (4)
When the MKGM module cannot directly process

the textual information, the entity information E or re-
lationship information R is transferred to the corre-
sponding embedding spaces. The closest relevant in-
formation points are then identified using 1-nearest
neighbor aggregation. This information is then repre-
sented using BERT embedding with a dimension size
of δB×D, the parameter B denotes the amount of graph

information.
Since there are two different modal features, an

additional modal Xclass needs to be added for differentia-
tion, the question embedding Q′ , Xclass , the image
embedding V′

I, and the knowledge graph information G
are then concatenated into a sequence Z0 .

Z0 = Q′;Xclass;V′
I;G[ ] (5)

The Transformer encoder is introduced next to ac-
quire the ultimate coded sequence zt . This procedure
requires input to the Transformer encoder, and as
shown in Eq. 6.

zt = Transformer Encoder z0( ) (6)
L deep Transformer layers iteratively update the

context vector z0 to achieve z t . This Transformer en-
coder differs from the standard Transformer, as pres-
ented in subection 3. 3. Finally, to predict the answer
z t, it is aggregated and averaged to derive the context
sequence.

zt
-
= 1

S + 1 + N∑
S+N

i = 0
zt (7)

Given that batch normalization (BN) [39] acceler-
ates model convergence, it has been implemented in

the output layer. zt
-
is fed into MLP and BN, resulting

in the final predicted answer y. Lastly, cross-entropy is
utilized as the classification loss:
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y = MLP BN MLP zt
-

( )( )( ) (8)

2. 2　 Medical knowledge graph modules
In MedVQA, answers are concise, and each tail

entity can respond when the appropriate head entity
and relationship are correctly identified. An MKGM
model that leverages the GRU method is introduced to
accurately predict the head and relation entities.

The knowledge graph embedding module relies on
the embedding representation of all relations and enti-
ties, denoted as R and E, respectively. Existing KG
embedding algorithms are employed to acquire entity
and relation embeddings. Low-dimensional vectors re-
present each relation / entity in the KG, preserving its
original structure and relations. BERT is utilized to
generate the embedding representation eh,rl,et( ) for
every fact ( h, l, t) in G. Subsequently, a function
φ ·( ) is established to evaluate the relation of the fact
(h, l, t) within the embedding space, et ≈ f eh,rl( ).

TransR[31] defines it as et Ml ≈ ehMl + pl, where Ml is
the transformation matrix of relation l. For all facts in
G, the embedding algorithm minimizes the overall dis-
tance between et and f eh,rl( ). One common approach
involves establishing marginal ranking criteria by utili-
zing positive and negative samples, which encompass
facts absent in G and composite facts, and subsequent-
ly training them, as depicted in Fig. 2, the goal of
MKGM is not to infer head entities and relations direct-
ly, but to jointly recover the head entity, relation and
tail entity representations of the problem in the knowl-
edge graph embedding space. If the answer cannot be
obtained directly by MKGM, the existing information is
used to find the closest graph to it for encoding and
then join it with visual embedding and text embedding.
The space where the learned relational representation of
R i i = 1,2,. . . ,m( ) is located is defined as the rela-
tional embedding space, and the space for E i( i = 1,
2,. . . ,N) is termed the entity embedding space.

Fig. 2　 Overview of the MKGM architecture

　 　 The goal is to identify a point in the relational em-
bedding space, designated as R̂m, that represents the
relationships of the given question, and a correspond-
ing point in the entity embedding space, labeled as
Êh, representing its head entity. When a question can
be answered by G, its relational vector representation
must occupy a position within the relational embedding
space. If G cannot answer a question, its entity vectors
or relational vectors must exist within the entity embed-
ding space or the relational embedding space. Conse-
quently, the objective is to create a model that inputs a
question and outputs either a vector R̂m with relationally
embedded representations or entity-embedded represen-
tations Êh, closely aligned with the question.

To predict the relational terms within a problem,
conventional methods typically depend on semantic
parsing techniques paired with manually created the-
sauri to forge the requisite relationships[39] . Alterna-
tively, each class of relation term could be classified
into a labeled category, effectively turning it into a
classification task[40] . However, these methods falter

when dealing with the medical domain due to its un-
bounded nature, meaning relations within a new prob-
lem could potentially differ from all existing ties within
the training data Q. Additionally, it has been identified
that the global relational data stored in entities R and E
is not only accessible but also potentially beneficial to
the overall accuracy of MedVQA. In response, a neu-
ral network-based model for relationship learning has
been proposed. The aim is to detect the representation
of a problem within the knowledge graph (KG) embed-
ding space. Therefore, it doesn􀆳t matter whether it􀆳s a
head entity or a relational entity in question. The entity
learning model aims to ascertain a vector Êh that corre-
lates as closely as possible with the embedded repre-
sentation of the head entity related to that problem.
The neural network architecture is used to predict both
the head entity representation Êh and relational entity
representation R̂m . The proposed solution, using gated
recarrent unit (GRU) [41] as an example of a recurrent
neural network, is illustrated in Fig. 3. Given a prob-
lem of length L, a pre-trained BERT model is used to
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map an L-token problem into a sequence of word em-
bedding vectors { x j }, j = 1,. . ,L. Then GRU is u-
tilized to learn the forward hidden state sequence
h
→

1,h
→

2,. . . ,h
→

L
( ) and the backward hidden state se-
quence h

←
1,h

←
2,. . . ,h

←
L

( ). The backward direction, for
example, h

←
j

{ } is computed by the following equations,
where W and b represent the weight matrix and bias
term.

　 　 fg = σ Wxf x j + Whf h
←
j +1 + bf

( ) (9)

ig = σ Wxi x j + Whi h
←
j +1 + bi

( ) (10)

og = σ Wxo x j + Who h
←
j +1 + bo

( ) (11)

cg = fg☉ c j +1 + ig tanh(Wxc x j + Whc h
←
j +1 + bc)

(12)

h
←
j = og☉ tanh cg

( ) (13)

Fig. 3　 Proposed learning model for entity embedding space and relationship embedding space

where fg , ig and og are the activation vectors of the ob-
livion, input and output gates respectively; cg is the
cell state vector; σ and tanh are the Sigmoid and Hy-
perbolic tangent functions respectively; ☉[ ] is the
Hadamard operation. Splice the forward and backward
hidden state vectors to obtain h j = h

→
j,h

←
j

{ }. The atten-
tional weight of the jth token, i. e. , a j is calculated
based on the following equations.

a j =
exp q j

( )

∑
L

i = 1
exp qi

( )
(14)

q j = tanh wT x j;h j
{ }+ bq( ) (15)

The attention weight a j is applied to h j and concat-
enated with the embedding vectors x j to obtain hidden
state s j = x j;a j;h j

{ }. A fully-connected layer is then
applied to s j, with the result rj ∈ δd×1 denoted as the
target vector of the j-th token. The predicted relation

denotes R
︿

m is computed as the average of the target vec-
tors of all tokens, i. e:

R
︿

m = 1
L∑

L

j = 1
rTj (16)

The weight matrices, weight vectors w, and bias
terms are calculated from the training data, which is
the problem and the relational embedding representa-
tion of the problem in Q.

2. 3　 Transformer encoder
Develop a modified Transformer encoder that dif-

fers from the standard version to extract visual, textu-
al, and fusion features using a unified approach. As
depicted in Fig. 4, the modified Transformer incorpo-
rates increased LayerNorm (LN) [42] and residual con-
nections between layers. Like the standard Transform-
er, the modified encoder accepts a 1D token embed-
ding sequence as input, with the context vector z0 fed
into the layer Transformer encoder. After several itera-
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tions of updates, zL is obtained. This iterative process
can be formally represented as

z″l = LN LN MSA zl -1( )( )( ) + zl -1
l = 1,2,…,L (17)

z′l = LN MLP LN z″l( )( )( ) + z″l
l = 1,2,…,L (18)

zL = z′l + zl -1 l = 1,2,…,L (19)
The enhanced Transformer structure improves

model stability and convergence speed by incorporating
additional LayerNorms and introducing residual con-
nections between layers. The inclusion of LayerNorm
strengthens the data distribution, while integrating re-
sidual layers effectively addresses network degradation
and gradient vanishing issues.

Fig. 4　 The proposed Transformer encoder

3　 Experiments

3. 1　 Datasets
SLAKE[19] dataset includes questions which are

classified by response type: ‘Closed’ questions with
fixed options and ‘Open’ questions allowing free-text
responses. The English version, SLAKE-EN, is used,
containing two radiology images and 7 033 question-an-
swer pairs. SLAKE categorizes questions into two
types: knowledge graph-based questions ( abbreviated
as ‘ KG’) and vision-based questions. The SLAKE
knowledge graph encompasses two primary attributes:

disease-relationship and organ-relationship.
P-VQA[20] dataset has been developed to establish

a VQA system tailored to patients, encompassing the
entire treatment process, which includes medical con-
sultations and diagnostic imaging. It comprises 20
prevalent diseases, 2 169 medical images, 24 800
question-answer pairs, and a medical knowledge graph
containing 419 entities. It is essential to highlight that
34% of the image-question pairs within the P- VQA
dataset feature two or more answers, indicating a multi-
ple-choice format.

3. 2　 Experimental setup
3. 2. 1　 Dataset splitting

SLAKE-EN[19] dataset consists of 4 919 question-
answer pairs and 550 medical images. Validation and
testing of the dataset utilized 92 medical images and
1 061 question-answer pairs. For the P-VQA[20] data-
set, 1 518 medical images and 13 360 question-answer
(Q&A) pairs were used for training, and 3 720 Q&A
pairs and 325 medical images were used for testing.
3. 2. 2　 MKGM

To evaluate the MKGM method􀆳s performance, the
traditional setup[43] is followed, using the same train-
ing, validation, and testing splits as originally provided
in SimpleQuestions[44] . 2010 i2b2 / VA[45] is used as G
in KG. The KG embedding algorithm, TransR[31], is
applied to G to learn R and E. The MKGM method is
used to predict the head entities and relations for each
question in the test split.
3. 2. 3　 MKGViLT implementation details

The experiment is conducted in an Ubuntu envi-
ronment using an NVIDIA RTX 3090 24 GB GPU to
train various models, including CNN variant networks,
MKGM, and Transformer. The hyper-parameter set-
tings for the MKGViLT model trained on different data-
sets are shown in Table 1. Accuracy serves as the eval-
uation metric. Additionally, the mixup data enhance-
ment method[46] is employed to enhance the model􀆳s
generalization performance on images. All models are
trained on SLAKE-EN[19] and P-VQA[20] to obtain the
final results.

Table 1　 The model hyper-parameters settings
Hyper-parameters Batch size Weight decay Iteration Epoch Lr
SLAKE-EN[19] 128 0. 001 1 060 1 600 0. 000 1
P-VQA[20] 64 0. 002 　 702 1 600 0. 000 1

3. 3　 Result
To address the problem, the pre-trained BERT

model is used to obtain word embeddings, and the text

embedding parameters Qpos and Qtype are trained from
scratch. Employ ResNet-101[36] to process the images
to extract fundamental feature maps. Similar to the pre-
vious study, Vpos and Vtype are trained without any pre-
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training. The additional modal distinction Xclass is set to
either 0 or 1. The extracted image and text features,
along with the distinguished representations, are fed
into the Transformer for further feature extraction and
fusion. Finally, the output of the Transformer is aver-
aged and fed into the fully connected layer for making
predictions. The results of SLAKE-EN [19] are summa-
rized in Table 2, where ± represents an interval value
derived from the three initialization methods: random
initialization, Xavier initialization, and He initializa-
tion. As shown in Table 2, the MKGViLT model sur-

passes the recently published baseline CPRD + BAN +
CR[47], which incorporates external image pretraining
and achieves state-of-the-art ( SOTA) performance.
The MKGViLT model employs ResNet-101 [36] to ex-
tract local features and uses a custom Transformer for
global feature extraction, leading to excellent results.
The MKGViLT model performs better in addressing
‘closed’ problems and KG accuracy, achieving im-
provements of 2. 3% and 2. 7% , respectively, com-
pared with the state-of-the-art baseline MKBN _
MGE[20] on the SLAKE-EN datasets.

Table 2　 Accuracy of the baseline and the proposed MKGViLT tested on SLAKE-EN[19] (% )
Methods Overall Open Closed KG
MFB[48] 73. 30 72. 20 75. 00 /
SAN[19] 75. 40 72. 20 79. 80 70. 30
BAN[47] 76. 30 74. 60 79. 10 /

MEVF + BAN + CR[47] 80. 00 78. 80 82. 00 /
CPRD + BAN[47] 81. 10 79. 50 83. 40 /

CPRD + BAN + CR[47] 82. 10 81. 20 83. 40 /
MKBN_MGE[20] 80. 60 77. 70 85. 10 75. 70

MKGViLT 83. 60 ± 0. 34↑ 79. 90 ± 0. 27↑ 87. 40 ± 0. 18↑ 78. 40 ± 0. 46↑

　 　 The results of P-VQA are shown in Table 3. The
results indicate that the MKGViLT model significantly
outperforms traditional models in terms of performance,

and shows comparable performance compared to meth-
ods that use external data for pre-training.

Table 3　 Performance of the baseline and the proposed MKGViLT tested on P-VQA[20] (% )
Methods Accuracy Recall Precision F1

MKBN_TransE[20] 94. 29 ± 0. 71 96. 70 ± 0. 17 96. 44 ± 0. 63 96. 46 ± 0. 35
MKBN_TransH[20] 94. 30 ± 0. 90 96. 58 ± 0. 37 96. 39 ± 0. 44 96. 38 ± 0. 42
MKBN_ConvKB[20] 94. 97 ± 0. 34 97. 36 ± 0. 40 97. 13 ± 0. 34 97. 18 ± 0. 15
MKBN_KBGAT[20] 94. 69 ± 0. 67 97. 01 ± 0. 44 96. 80 ± 0. 44 96. 81 ± 0. 46
MKBN_MGE[20] 95. 45 ± 0. 13 97. 49 ± 0. 26 97. 43 ± 0. 24 97. 40 ± 0. 23

MKGViLT 96. 68 ± 0. 42 97. 94 ± 0. 63 96. 48 ± 0. 84 97. 55 ± 0. 48

3. 4 　 Comparison of different Transformer archi-
tectures

This section compares the performance of various
Transformer architectures, focusing on model stability
and convergence efficiency. Fig. 5 illustrates the ex-
perimental outcomes, highlighting the enhanced stabili-
ty and accelerated convergence of the Transformer
structure in test set evaluations. The comparative anal-
ysis encompasses the original Transformer architec-
ture[49] , the vision transformer (ViT) [8], and the pro-
posed structure, ensuring uniform configuration across
all experiments. The findings reveal that the model has
superior accuracy compared to the other two architec-
tures. Compared with the original Transformer archi-
tecture, the proposed model demonstrates superior per-
formance in terms of both convergence speed and accu-
racy. This improvement is attributed to the incorpora-

tion of LayerNorm and Layer Residual connections,
which enhance model stability during training and con-
tribute to superior results.

The introduction of residual connections between
network layers can impact data processing stability. To
address this issue, LayerNorm is introduced to main-
tain consistent data distribution. LayerNorm stabilizes
the network􀆳s data distribution, enhancing the model􀆳s
generalization capabilities. Applying LayerNorm after
multi-head attention ensures the stability of the Trans-
former structure and makes the model more reliable in
processing data. Table 4 lists the results of the Trans-
former structure with two other structures. It is evident
that the model􀆳s accuracy has improved by 2 to 3 per-
centage points, indicating that the Transformer struc-
ture is better suited for processing small-scale datasets.
Compared with other models, this model exhibits better
performance and generalization ability when dealing
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with small-scale data. This improvement can be attrib-
uted to the Transformer structure􀆳s enhanced ability to
capture data features more effectively and possess a

more robust generalization capability, enabling more
effective handling of small-scale data.

Fig. 5　 Comparison of the proposed Transformer encoder with other encoders

　 　Table 4　 Testing the impact of Transformers with different
structures on the SLAKE-EN[19] (% )

Methods Overall Open Closed

Original Transformer 81. 80 77. 80 87. 20
ViT Transformer 81. 50 77. 60 86. 30

Proposed Transformer 83. 60 ±0. 34 79. 90 ±0. 27 87. 40 ±0. 18

3. 5　 Ablation
This section assesses the effectiveness by investi-

gating the influence of each submodule on MKGViLT.
To enhance ablation comparison, the experiments focus
narrowly on SLAKE-EN. The same configuration as
previously is used for SLAKE-EN, encompassing 4 919
Q&A pairs, 550 medical images for training, and 92
medical images with 1 061 Q&A pairs for validation
and testing.
3. 5. 1　 Impact of convolutional module use on

MKGViLT models
This study assesses the impact of the convolution

module on MKGViLT by comparing scenarios with and
without its use. Experimental results are detailed in
Table 5. ‘None’ indicates that images are segmented
directly into small blocks and then mapped to the re-
quired Transformer dimensions via fully connected lay-
ers, similar to operations in ViT. Integrating estab-
lished feature extraction networks like VGG-16 [37] or
DenseNet[38] into MKGViLT significantly enhances
model performance. Mainly, there is a substantial ac-
curacy increase of 16% when utilizing ResNet-101
compared with ViT without employing the convolution

framework, as highlighted in Fig. 6. The experimen-
tal outcomes suggest that the model with the integrated
CNN module not only demonstrates greatly improved
performance, addressing the deficiency in training re-
sources needed for the Transformer, but also exhibits
faster convergence. ViT􀆳s method of slicing and scal-
ing images needs to be more complex and crude, dis-
rupting the original image􀆳s structure and overall con-
tent and hindering the model􀆳s ability to learn more
comprehensive visual features. Incorporating ResNet-
101 into MKGViLT effectively extracts local image
features and preserves image relationships when focu-
sing directly.

Table 5　 Testing the impact of ResNet-101 on MKGViLT
performance on the SLAKE-EN[19] (% )

CNN-model Overall Open Closed

None 67. 6 66. 4 72. 3
DenseNet[38] 78. 8 77. 3 83. 2
VGG-16[37] 81. 1 79. 4 86. 7

ResNet-101[36] 83. 6 79. 9 87. 4

3. 5. 2 　 Impact of using the MKGM module on
MKGViLT

The efficacy of MKGM is assessed by conducting a
comparative analysis of MKGViLT􀆳s performance with
and without MKGM integration. After accurately pre-
dicting the entities and relations in the question, the
relevant information of the 1-nearest neighbor in the
constructed knowledge graph is located. This informa-
tion was integrated with previous visual and textual data
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before being input into the network for fusion-based an-
swer prediction. Experimental results, as shown in Ta-
ble 6, indicate that incorporating the MKGM module
improved accuracy on the SLAKE-EN dataset. Fig. 7

further illustrates that the overall stability and accuracy
of MKGViLT have been enhanced through the integra-
tion of MKGM.

Fig. 6　 Evaluating the performance of MKGViLT with and without ResNet-101

Table 6　 Testing the impact of using MKGM structures
on the SLAKE-EN[19] (% )

Methods Overall Open Closed

MKGViLT without MKGM 81. 2 77. 3 87. 2
MKGViLT 83. 6 79. 9 87. 4

3. 5. 3　 Effect of using different normalization methods
on MKGViLT at the output layer

This study evaluates the influence of normalization
techniques at the output layer on the multimodal visual
question-answering system􀆳s overall performance. In

models without normalization, the output consists of
two fully connected layers. Conversely, models that in-
corporate normalization apply LayerNorm[42] and Batch-
Norm[39] following the initial fully connected layer.
Rigorous preprocessing of images for MKGViLT in-
volves segmenting them into smaller units and subse-
quently mapping them onto the Transformer via fully
connected layers. Results delineated in Table 7 dem-
onstrate a marked improvement in system performance
with the implementation of BatchNorm at the output
layer. Specifically, implementing BatchNorm results

Fig. 7　 Evaluating the performance of MKGViLT with and without MKGM
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in an 18. 5% increase in accuracy compared with
LayerNorm, and a 25. 8% increase compared with
models without normalization. Fig. 8 visually repre-
sents these enhancements, highlighting the efficacy of
BatchNorm in optimizing model performance.

Table 7　 Evaluating the impact of various normalization methods
on output layer performance in MKGViLT in the
SLAKE-EN[19] (% )

Methods BN LN
SLAKE-EN

Overall Open Closed

49. 6 47. 3 51. 4

MKGViLT √ 56. 9 56. 4 57. 6

√ 75. 4 73. 9 77. 6

4　 Conclusion

This study investigates the application of Trans-
former in MedVQA and introduces the MKGViLT mod-
el. The MKGViLT model incorporates external knowledge

through the MKGM module and is specifically designed
for MedVQA tasks. Compared with previous methods,
this model employs an enhanced Transformer architec-
ture for feature extraction and modal fusion. Integrating
knowledge graphs in the MKGM model enhances both
the convergence speed and performance stability for
MedVQA tasks. Besides its applicability to the current
task, the proposed MKGViLT architecture shows prom-
ising transferability to additional tasks. According to
experimental evaluations, this model delivers top-tier
performance that surpasses leading benchmarks without
the need for external images.

However, several challenges remain. First, al-
though the MKGViLT model speeds up convergence,
achieving optimal performance still requires significant
training time and resources. Second, the limited availa-
bility of pre-training data in the medical domain chal-
lenges MKGM models, which require ample data for
pre-training. Lastly, the substantial parameter size of the
MKGViLT model suggests that exploring methods to opti-
mize its structure is a viable future research direction.

Fig. 8　 Evaluating the effectiveness of different normalization techniques on the output layer performance in MKGViLT
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