文章摘要
池雪花,刘丽帆,章成志.基于学术论文的学者研究兴趣标签发现 研究[J].情报工程,2019,5(2):028-039
基于学术论文的学者研究兴趣标签发现 研究
Analysis of Scholars Research Interest Tag Discovery Based on Academic Papers
  
DOI:10.3772/j.issn.2095-915X.2019.02.003
中文关键词: 兴趣标签;LDA;Doc2Vec;余弦相似度;集成方法
英文关键词: Interest tag; LDA; Doc2Vec; cosine similarity; ensemble method
基金项目:富媒体数字出版内容组织与知识服务重点实验室开放基金项目(ZD2018-07/01):“ 富媒体数字出版内容的知识挖掘及发现技术研究 ”。
作者单位
池雪花 南京理工大学信息管理系 
刘丽帆 南京理工大学信息管理系 
章成志 南京理工大学信息管理系 
摘要点击次数: 2455
全文下载次数: 2636
中文摘要:
      标签构建对信息检索和个性化推荐有重要的辅助作用,学者的研究兴趣标签体现了一定时期内学者和某一个领域的研究热点与发展方向。以学者为研究对象,对学者的研究兴趣标签进行发现研究,有助于学者兴趣标签自动构建与推荐,对加强学术交流合作有重要作用。本文基于学术论文信息,采用 LDA 与 Doc2Vec 两种文本表示方法,对学者和兴趣标签分别进行表示,然后计算两种方法得到的 学者与研究兴趣标签的余弦相似度,最终采用集成方法对兴趣标签进行融合,得到学者的研究兴趣标签。结果证明,集成方法能够获得更好地标注效果。
英文摘要:
      Tag construction plays an important role in information retrieval and personalized recommendation. Scholars’ research interest tags reflect the research hotspots and development directions of scholars and a certain field in a certain period. Taking scholars as the research object, research on the scholars’ research interest tags is helpful to automatic construction and recommen-dation of scholars’ interest tags, which plays an important role in strengthening academic exchanges and cooperation. Based on the academic paper information, this paper used LDA and Doc2Vec to represent the scholars and interest tags respectively. Then, we calculated the cosine similarity between the scholars and the research interest tags obtained by these two methods. Finally, we use the ensemble method to fuse interest tags and get the research interest tags of scholars. The results turns out that the ensemble method can achieve better tagging results.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮