文章摘要
仇 实1 高影繁1 姚长青1 刘志辉1 李佳星2.一种面向非均衡样本的企业金融风险预测方法[J].中国科技资源导刊,2021,(5):11~17
一种面向非均衡样本的企业金融风险预测方法
Enterprise Financial Risk Forecasting Method Based on Unbalanced Samples
投稿时间:2021-06-01  
DOI:
中文关键词: 非平衡样本;金融企业;信贷风险;Catboost;EasyEnsemble
英文关键词: unbalanced samples, financial enterprises, credit risk, Catboost, EasyEnsemble
基金项目:中国科学技术信息研究所重点工作项目“上市公司年报数据库建设及服务系统研发”(ZD2021-10)。
作者单位
仇 实1 高影繁1 姚长青1 刘志辉1 李佳星2 (1. 中国科学技术信息研究所,北京 100038;2. 河北银行,河北石家庄 050011) 
摘要点击次数: 891
全文下载次数: 1956
中文摘要:
      在企业所面临的众多风险中,企业金融风险表现尤为突出,而在大数据环境下,严重的数据不均衡成为横 亘在企业金融风险分析面前的一道鸿沟。本文针对企业竞争情报分析中的样本不均衡问题,以金融企业信贷风险预测 为切入点,提出一种面向非平衡样本的企业风险识别方法。该方法采用人工智能分析领域中的特征选择、非均衡样本 平衡处理和集成学习等智能分析手段,为大数据环境下企业竞争情报中的企业风险识别问题提供解决思路。
英文摘要:
      Among the many risks faced by enterprises, corporate financial risks bear the brunt. In the context of big data, serious data imbalance has become a chasm in front of the analysis of corporate financial risks. Aiming at the problem of sample imbalance in competitive intelligence analysis of enterprises, this paper takes credit risk prediction of financial enterprises as the breakthrough point, and puts forward an enterprise risk identification method for unbalanced samples. This method adopts a variety of intelligent analysis methods in the field of artificial intelligence analysis, such as feature selection, unbalanced sample balance processing and ensemble learning, to provide solutions to the problem of enterprise risk identification in enterprise competitive intelligence under the environment of big data.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮