文章摘要
蒙祖强,史忠植.基于相容粒度空间模型的自适应图像语义分类方法[J].高技术通讯(中文),2012,22(7):697~705
基于相容粒度空间模型的自适应图像语义分类方法
Self adaptive image semantic classification based on tolerance granular space model
  修订日期:2011-05-25
DOI:
中文关键词: 图像语义分类, 粒度计算(GrC), 自适应, 相容粒度空间, 相容关系
英文关键词: image semantic classification, granular computing (GrC), self adaptation, tolerance granular space, tolerance relation
基金项目:863计划(2007AA01Z132),973计划(2007CB311004),国家自然科学基金(61063032)和广西自然科学基金(2012GXNSFAA053225)资助项目
作者单位
蒙祖强 广西大学计算机与电子信息学院 
史忠植 中国科学院计算技术研究所智能信息处理重点实验室 
摘要点击次数: 3009
全文下载次数: 2222
中文摘要:
      针对图像底层特征和高层语义之间存在的语义鸿沟问题,运用相容粒度空间模型对图像语义分类进行了研究,提出一种自适应的图像语义分类方法,为解决此问题探索出了一种有效途径。该方法将图像集建模为基于原始特征的相容粒度空间;在此空间中,通过引入相容参数和构造距离函数来定义相容关系,从而通过调整相容参数可有效控制对象邻域粒的大小,最终可直接处理图像的实数型特征而无需进行离散化等预处理;此外,通过引入相容度的方法实现对相容参数的自适应优化,从而自动调整邻域粒的大小,使得构造的分类器几乎不需要手工设置参数即可自动适应于各种不同类型的图像集,并获得比同类算法更好的分类准确率。实验结果验证了这种方法的有效性和可行性。
英文摘要:
      Aiming at the problem of the semantic gap between the low level feature and the high level semantic, the paper uses the tolerance granular space model to study image semantic classification, and then proposes a self adaptive image semantic classification method, thus an effective way for solving the semantic gap problem is given. The proposed method models an image set as a primitive feature based tolerance granular space, in which the tolerance relation is defined by using tolerance parameters and establishing a distance function, and then the size of an object’s neighborhood granule can be controlled effectively and finally the real valued features can be directly dealt with without any pretreatment, such as discretization. In addition, tolerance parameters can be self adaptively optimized by introducing the concept of tolerance degree, so as to automatically control the size of an object’s neighborhood granule, and in this way, the obtained classifier can adjust itself to a variety of image sets almost without any manual parameter configuration. The experimental results show that the proposed method is effective and feasible, and it has better classification performance than that of similar methods.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮