皮瑶,刘惠康,李倩.基于柔性薄膜阵列压力传感器的抱闸故障诊断[J].高技术通讯(中文),2021,31(8):836~843 |
基于柔性薄膜阵列压力传感器的抱闸故障诊断 |
Fault diagnosis of brake by flexible film array pressure sensor |
|
DOI:10.3772/j.issn.1002-0470.2021.08.006 |
中文关键词: 柔性薄膜阵列压力传感器; LeNet模型; 跨连接; 抱闸制动器; 故障诊断 |
英文关键词: flexible film array pressure sensor, LeNet model, cross-connected, drum brake, fault diagnosis |
基金项目: |
|
摘要点击次数: 2025 |
全文下载次数: 1337 |
中文摘要: |
抱闸制动装置广泛应用于工业提升装置、民用曳引式电梯,针对抱闸制动器的运行状态监测和故障诊断,本文提出一种基于柔性薄膜阵列压力传感器的故障诊断方法,运用卷积神经网络(CNN)对传感器的数据进行处理达到故障诊断的目的。本文在LeNet5模型的基础上引入跨连接部分,将网络结构中提取的低层次特征与高层次特征相结合,经过全连接层达到多分类的目的。通过训练来自柔性薄膜阵列压力传感器的实验数据,该模型实现了4种基本抱闸故障和正常状态的自动识别。实验结果表明,改进的LeNet卷积神经网络模型在抱闸故障诊断上的检测正确率达到99.19%,该模型在同一训练数据集上的表现明显优于传统的LeNet5模型。 |
英文摘要: |
Brake device is widely used in industrial and civil traction elevator. Aiming at the condition monitoring and fault diagnosis of brake, a method based on flexible film array pressure sensor is proposed in this paper. Convolution neural network (CNN) is used to process the sensor data to achieve the purpose of fault diagnosis. This paper adds the cross-connected part which combines the low-level features with the high-level features to the classical LeNet5 convolution neural network, and achieves the goal of multi classification through the full connection layer.This method can identify four basic faults and normal condition automatically by training the experimental data of flexible film array pressure sensor. The experimental results show that the detection accuracy of the improved LeNet convolution neural network reaches 99.19%, and the performance of this model is better than that of the traditional LeNet5 model on the same training data set. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |