文章摘要
程丹松,杨剑哲,李思倩,石大明,王君,黄庆成.基于最小交叉熵的相关向量机[J].高技术通讯(中文),2014,24(9):942~947
基于最小交叉熵的相关向量机
  
DOI:
中文关键词: 相关向量机(RVM), 贝叶斯推理, 最小交叉熵, 径向基函数(RBF)网络
英文关键词: 
基金项目:
作者单位
程丹松 哈尔滨工业大学计算机科学与技术学院 
杨剑哲 哈尔滨工业大学计算机科学与技术学院 
李思倩 哈尔滨工业大学计算机科学与技术学院 
石大明 哈尔滨工业大学计算机科学与技术学院 
王君 哈尔滨工业大学计算机科学与技术学院 
黄庆成 哈尔滨工业大学计算机科学与技术学院 
摘要点击次数: 3160
全文下载次数: 2542
中文摘要:
      研究了传统相关向量机(RVM)的性能,分析了传统RVM的性能完全取决于先验假设的连接权值和参数的平滑性,因而其稀疏性实际上仍受核函数或核参数选择的控制,这在某些情况下可能会导致严重的欠拟合或过拟合现象的问题,在此基础上,提出了明确地给出基函数优化过程中的目标数量,并通过最小化训练阶段前向“假定”概率分布和测试阶段反向“真实”概率分布间的交叉熵来构建RVM的方法。 实验结果表明,这种方法不但可以构建最小复杂度的基于最小交叉熵的RVM结构,而且构建的RVM能很好地对数据进行拟合,提高预测的准确性,增强其稀疏性。
英文摘要:
      
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮