文章摘要
谭海宁* **,姚迪* **,毕经平* **,向徐***,杨啸***.面向数据匮乏城市的下一个POI推荐方法[J].高技术通讯(中文),2021,31(12):1248~1260
面向数据匮乏城市的下一个POI推荐方法
A next POI recommendation method for data-poor cities
  
DOI:10.3772/j.issn.1002-0470.2021.12.003
中文关键词: 兴趣点(POI)推荐; 位置社交网络(LBSN); 元学习; 神经常微分方程; 推荐系统
英文关键词: point of interest (POI) recommendation, location-based social network (LBSN), meta-learning, neural ordinary differential equation, recommender system
基金项目:
作者单位
谭海宁* **  
姚迪* **  
毕经平* **  
向徐***  
杨啸***  
摘要点击次数: 927
全文下载次数: 635
中文摘要:
      位置社交网络(LBSN)用户位置数据的分布不均衡,及某些用户出于对隐私安全的考量刻意隐藏自己部分位置信息等因素加剧了兴趣点(POI)推荐难度。就此本文提出了基于元学习的时空神经常微分方程(ML-ODE)来进行有效的下一个POI推荐。该模型主要是将元学习的思想融入到POI推荐过程中,通过不同任务训练优化初始参数,将数据丰富城市中的泛化移动模式迁移到数据匮乏城市,达到优化POI预测任务的目的。该模型将神经常微分方程用于POI推荐领域,定义连续的动态过程,可以接受任意时刻的输入数据,克服了大多数时序推荐模型静态离散化的时间间隔处理方式,更适用于POI序列推荐任务。在真实公开数据集Foursqure上的实验结果表明,ML-ODE在POI推荐方面比当前主流的POI预测方法在NDCG@N指标上提升了超过10%。
英文摘要:
      In location-based social networks (LBSNs), the uneven distribution of users’ check-in data and the fact that some users deliberately hide some of their location information for privacy and security concerns aggravate the difficulty of point of interest (POI) recommendation. Aiming at this issue, a meta-learning based ordinary differential neural network (ML-ODE) is proposed to carry out effective POI recommendation tasks. ML-ODE leverages the meta-learning mechanism to optimize the parameters of recommendation model. ML-ODE utilizes different tasks to initial parameters, during which the generalized mobility knowledge in the data-rich area is transferred to the data-poor area to achieve the purpose of optimizing the POI recommendation. The network defines a continuous dynamic process that can accept input data that is sporadically-observed. It overcomes the static discretization constraints of most time series prediction models and is more suitable for POI recommendation. The experimental results on the Foursqure real public dataset show that ML-ODE has better performance in POI recommendation than the current state-of-the-art POI recommendation method on the index of NDCG@N which has been increased by more than 10%.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮