文章摘要
李志东,杨武,王巍,苘大鹏.基于场景平移的网络安全态势预测[J].高技术通讯(中文),2012,22(2):140~146
基于场景平移的网络安全态势预测
Network security situation prediction based on scene shift
  修订日期:2010-06-21
DOI:
中文关键词: 网络安全, 安全态势, 趋势预测, 场景平移, 长程相关
英文关键词: network security, security situation, tendency prediction, scene shift, long range correlation
基金项目:863计划(2007AA01Z473)和国家242信息安全计划(2007B17)资助项目
作者单位
李志东 哈尔滨工程大学信息安全研究中心 
杨武 哈尔滨工程大学信息安全研究中心 
王巍 哈尔滨工程大学信息安全研究中心 
苘大鹏 哈尔滨工程大学信息安全研究中心 
摘要点击次数: 3073
全文下载次数: 2279
中文摘要:
      针对网络安全态势序列复杂多变,蕴含各种各样的演化规律,传统网络安全态势预测方法难以处理的问题,提出了一种专用的预测算法,该算法从长程相关的视角辨识态势序列蕴含的规律,依据事发迹象推断延续效应,经相似度、普遍性、对比度和缩放比加权后,合成预测序列。继而引入进化算法,依据预测效果调节相关参数,通过在线反馈式学习强化泛例的作用、弱化特例的干扰,提升预测算法的适应性。实验表明,该预测算法从超长态势序列中辨识多种类远距离相关性的能力很强,能对复杂多变的趋势保持自适应,预测结果更为精准可信。
英文摘要:
      Based on the view that the traditional methods for prediction of network security situation are unable to deal with the complex and inconstant network security situation sequence and its various evolution rules, the paper presents a special prediction algorithm. The algorithm identifies the rules in the situation sequence from the perspective of long range correlation, infers the subsequent effect according to occurred indication, and synthesizes the prediction sequence with the weighting by the indicators of similarity, universality, contrast ratio and scaling ratio. Afterwards, an evolution algorithm is introduced to adjust related parameters according to the prediction effect, strengthen the significance of universal cases and weaken the interference of special ones via online feedback learning, and improve the adaptability of the prediction algorithm. The experimenal results show that the prediction algorithm can perform excellently in identifying various long distance correlations from the super long situation sequence, keep self adaptive towards complex and inconstant tendencies, and is more accurate.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮